Change the input of compliance_heatmap.py
parent
4d52e2d980
commit
975dc80c4b
|
@ -34,7 +34,7 @@ rule all:
|
|||
day_segment = config["SCREEN"]["DAY_SEGMENTS"]),
|
||||
# Reports
|
||||
expand("reports/figures/{pid}/{sensor}_heatmap_rows.html", pid=config["PIDS"], sensor=config["SENSORS"]),
|
||||
expand("reports/figures/{pid}/compliance_heatmap.html", pid=config["PIDS"], sensor=config["SENSORS"]),
|
||||
expand("reports/figures/{pid}/compliance_heatmap.html", pid=config["PIDS"]),
|
||||
expand("reports/figures/{pid}/battery_consumption_rates_barchart.html", pid=config["PIDS"]),
|
||||
|
||||
# --- Packrat Rules --- #
|
||||
|
|
|
@ -11,7 +11,7 @@ rule heatmap_rows:
|
|||
|
||||
rule compliance_heatmap:
|
||||
input:
|
||||
expand("data/raw/{{pid}}/{sensor}_with_datetime.csv", sensor=config["SENSORS"])
|
||||
"data/interim/{pid}/phone_sensed_bins.csv"
|
||||
params:
|
||||
pid = "{pid}"
|
||||
output:
|
||||
|
|
|
@ -4,12 +4,12 @@ import plotly.io as pio
|
|||
import plotly.graph_objects as go
|
||||
import datetime
|
||||
|
||||
def getComplianceMatrix(dates, compliance_bins):
|
||||
def getDatesComplianceMatrix(phone_sensed_bins):
|
||||
dates = phone_sensed_bins.index
|
||||
compliance_matrix = []
|
||||
for date in dates:
|
||||
date_bins = compliance_bins[compliance_bins["local_date"] == date]
|
||||
compliance_matrix.append(date_bins["has_row"].tolist())
|
||||
return compliance_matrix
|
||||
compliance_matrix.append(phone_sensed_bins.loc[date, :].tolist())
|
||||
return dates, compliance_matrix
|
||||
|
||||
def getComplianceHeatmap(dates, compliance_matrix, pid, output_path, bin_size):
|
||||
bins_per_hour = int(60 / bin_size)
|
||||
|
@ -25,51 +25,16 @@ def getComplianceHeatmap(dates, compliance_matrix, pid, output_path, bin_size):
|
|||
|
||||
# get current patient id
|
||||
pid = snakemake.params["pid"]
|
||||
sensors_dates = []
|
||||
sensors_five_minutes_row_is = pd.DataFrame()
|
||||
for sensor_path in snakemake.input:
|
||||
sensor_data = pd.read_csv(sensor_path)
|
||||
phone_sensed_bins = pd.read_csv(snakemake.input[0], parse_dates=["local_date"], index_col="local_date")
|
||||
|
||||
# check if the sensor is off
|
||||
if sensor_data.empty:
|
||||
continue
|
||||
|
||||
# create a dataframe contains 2 columns: local_date_time, has_row
|
||||
sensor_data["has_row"] = [1]*sensor_data.shape[0]
|
||||
sensor_data["local_date_time"] = pd.to_datetime(sensor_data["local_date_time"])
|
||||
sensed_bins = sensor_data[["local_date_time", "has_row"]]
|
||||
|
||||
# get the first date and the last date of current sensor
|
||||
start_date = datetime.datetime.combine(sensed_bins["local_date_time"][0].date(), datetime.time(0,0,0))
|
||||
end_date = datetime.datetime.combine(sensed_bins["local_date_time"][sensed_bins.shape[0]-1].date(), datetime.time(23,59,59))
|
||||
|
||||
# add the above datetime with has_row=0 to our dataframe
|
||||
sensed_bins.loc[sensed_bins.shape[0], :] = [start_date, 0]
|
||||
sensed_bins.loc[sensed_bins.shape[0], :] = [end_date, 0]
|
||||
# get bins with 5 min
|
||||
sensor_five_minutes_row_is = pd.DataFrame(sensed_bins.resample("5T", on="local_date_time")["has_row"].sum())
|
||||
sensor_five_minutes_row_is["has_row"] = (sensor_five_minutes_row_is["has_row"]>0).astype(int)
|
||||
# merge current sensor with previous sensors
|
||||
if sensors_five_minutes_row_is.empty:
|
||||
sensors_five_minutes_row_is = sensor_five_minutes_row_is
|
||||
else:
|
||||
sensors_five_minutes_row_is = pd.concat([sensors_five_minutes_row_is, sensor_five_minutes_row_is]).groupby("local_date_time").sum()
|
||||
|
||||
if sensors_five_minutes_row_is.empty:
|
||||
if phone_sensed_bins.empty:
|
||||
empty_html = open(snakemake.output[0], "w")
|
||||
empty_html.write("There is no sensor data for " + pid)
|
||||
empty_html.close()
|
||||
else:
|
||||
sensors_five_minutes_row_is.reset_index(inplace=True)
|
||||
# resample again to impute missing dates
|
||||
sensors_five_minutes_row_is_successive = pd.DataFrame(sensors_five_minutes_row_is.resample("5T", on="local_date_time")["has_row"].sum())
|
||||
|
||||
# get sorted date list
|
||||
sensors_five_minutes_row_is_successive.reset_index(inplace=True)
|
||||
sensors_five_minutes_row_is_successive["local_date"] = sensors_five_minutes_row_is_successive["local_date_time"].apply(lambda x: x.date())
|
||||
dates = list(set(sensors_five_minutes_row_is_successive["local_date"]))
|
||||
dates.sort()
|
||||
compliance_matrix = getComplianceMatrix(dates, sensors_five_minutes_row_is_successive)
|
||||
|
||||
# resample to impute missing dates
|
||||
phone_sensed_bins = phone_sensed_bins.resample("1D").asfreq().fillna(0)
|
||||
# get dates and compliance_matrix
|
||||
dates, compliance_matrix = getDatesComplianceMatrix(phone_sensed_bins)
|
||||
# get heatmap
|
||||
getComplianceHeatmap(dates, compliance_matrix, pid, snakemake.output[0], 5)
|
Loading…
Reference in New Issue