Refactor the rule phone_locations_add_doryab_extra_columns
parent
91a767699d
commit
9687081fbe
|
@ -370,15 +370,7 @@ rule phone_locations_add_doryab_extra_columns:
|
||||||
input:
|
input:
|
||||||
sensor_input = "data/interim/{pid}/phone_locations_processed_with_datetime.csv",
|
sensor_input = "data/interim/{pid}/phone_locations_processed_with_datetime.csv",
|
||||||
params:
|
params:
|
||||||
accuracy_limit = config["PHONE_LOCATIONS"]["PROVIDERS"]["DORYAB"]["ACCURACY_LIMIT"],
|
provider = config["PHONE_LOCATIONS"]["PROVIDERS"]["DORYAB"]
|
||||||
maximum_row_gap = config["PHONE_LOCATIONS"]["PROVIDERS"]["DORYAB"]["MAXIMUM_ROW_GAP"],
|
|
||||||
dbscan_eps = config["PHONE_LOCATIONS"]["PROVIDERS"]["DORYAB"]["DBSCAN_EPS"],
|
|
||||||
dbscan_minsamples = config["PHONE_LOCATIONS"]["PROVIDERS"]["DORYAB"]["DBSCAN_MINSAMPLES"],
|
|
||||||
threshold_static = config["PHONE_LOCATIONS"]["PROVIDERS"]["DORYAB"]["THRESHOLD_STATIC"],
|
|
||||||
clustering_algorithm = config["PHONE_LOCATIONS"]["PROVIDERS"]["DORYAB"]["CLUSTERING_ALGORITHM"],
|
|
||||||
cluster_on = config["PHONE_LOCATIONS"]["PROVIDERS"]["DORYAB"]["CLUSTER_ON"],
|
|
||||||
infer_home_location_strategy = config["PHONE_LOCATIONS"]["PROVIDERS"]["DORYAB"]["INFER_HOME_LOCATION_STRATEGY"],
|
|
||||||
minimum_days_to_detect_home_changes = config["PHONE_LOCATIONS"]["PROVIDERS"]["DORYAB"]["MINIMUM_DAYS_TO_DETECT_HOME_CHANGES"]
|
|
||||||
output:
|
output:
|
||||||
"data/interim/{pid}/phone_locations_processed_with_datetime_with_doryab_columns.csv"
|
"data/interim/{pid}/phone_locations_processed_with_datetime_with_doryab_columns.csv"
|
||||||
script:
|
script:
|
||||||
|
|
|
@ -104,15 +104,17 @@ def infer_home_location(location_data, clustering_algorithm, hyperparameters, st
|
||||||
|
|
||||||
|
|
||||||
location_data = pd.read_csv(snakemake.input["sensor_input"])
|
location_data = pd.read_csv(snakemake.input["sensor_input"])
|
||||||
accuracy_limit = snakemake.params["accuracy_limit"]
|
provider = snakemake.params["provider"]
|
||||||
maximum_row_gap = snakemake.params["maximum_row_gap"]
|
|
||||||
dbscan_eps = snakemake.params["dbscan_eps"]
|
accuracy_limit = provider["ACCURACY_LIMIT"]
|
||||||
dbscan_minsamples = snakemake.params["dbscan_minsamples"]
|
maximum_row_gap = provider["MAXIMUM_ROW_GAP"]
|
||||||
threshold_static = snakemake.params["threshold_static"]
|
dbscan_eps = provider["DBSCAN_EPS"]
|
||||||
clustering_algorithm = snakemake.params["clustering_algorithm"]
|
dbscan_minsamples = provider["DBSCAN_MINSAMPLES"]
|
||||||
cluster_on = snakemake.params["cluster_on"]
|
threshold_static = provider["THRESHOLD_STATIC"]
|
||||||
strategy = snakemake.params["infer_home_location_strategy"]
|
clustering_algorithm = provider["CLUSTERING_ALGORITHM"]
|
||||||
days_threshold = snakemake.params["minimum_days_to_detect_home_changes"]
|
cluster_on = provider["CLUSTER_ON"]
|
||||||
|
strategy = provider["INFER_HOME_LOCATION_STRATEGY"]
|
||||||
|
days_threshold = provider["MINIMUM_DAYS_TO_DETECT_HOME_CHANGES"]
|
||||||
|
|
||||||
rows_before_accuracy_filter = len(location_data)
|
rows_before_accuracy_filter = len(location_data)
|
||||||
location_data = location_data[location_data["accuracy"] < accuracy_limit]
|
location_data = location_data[location_data["accuracy"] < accuracy_limit]
|
||||||
|
|
Loading…
Reference in New Issue