Merge branch 'labels' into run_test_participant
commit
8ed7d23348
|
@ -168,7 +168,8 @@ for provider in config["PHONE_ESM"]["PROVIDERS"].keys():
|
|||
if config["PHONE_ESM"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||
files_to_compute.extend(expand("data/raw/{pid}/phone_esm_raw.csv",pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/raw/{pid}/phone_esm_with_datetime.csv",pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/interim/{pid}/phone_esm_clean.csv",pid=config["PIDS"]))
|
||||
for feature in config["PHONE_ESM"]["PROVIDERS"][provider]["FEATURES"]:
|
||||
files_to_compute.extend(expand("data/interim/{pid}/phone_esm_{feature}_clean.csv",pid=config["PIDS"],feature=feature))
|
||||
#files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv",pid=config["PIDS"]))
|
||||
#files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||
|
||||
|
|
|
@ -239,7 +239,7 @@ PHONE_ESM:
|
|||
PROVIDERS:
|
||||
STRAW:
|
||||
COMPUTE: True
|
||||
FEATURES:
|
||||
FEATURES: ["PANAS_positive_affect", "PANAS_negative_affect"]
|
||||
SRC_SCRIPT: src/features/phone_esm/rapids/main.py
|
||||
|
||||
# See https://www.rapids.science/latest/features/phone-keyboard/
|
||||
|
|
|
@ -327,8 +327,8 @@ rule conversation_r_features:
|
|||
rule preprocess_esm:
|
||||
input: "data/raw/{pid}/phone_esm_with_datetime.csv"
|
||||
params:
|
||||
questionnaire_ids = [8,9]
|
||||
output: "data/interim/{pid}/phone_esm_clean.csv"
|
||||
questionnaire_names = lambda wildcards: config["PHONE_ESM"]["PROVIDERS"][wildcards.feature]["FEATURES"]
|
||||
output: "data/interim/{pid}/phone_esm_{feature}_clean.csv"
|
||||
script:
|
||||
"../src/features/phone_esm/straw/preprocess.py"
|
||||
|
||||
|
|
|
@ -19,48 +19,32 @@ ESM_TYPE = {
|
|||
|
||||
QUESTIONNAIRE_IDS = {
|
||||
"sleep_quality": 1,
|
||||
"PANAS": {
|
||||
"positive_affect": 8,
|
||||
"negative_affect": 9
|
||||
},
|
||||
"job_content_questionnaire": {
|
||||
"job_demand": 10,
|
||||
"job_control": 11,
|
||||
"supervisor_support": 12,
|
||||
"coworker_support": 13,
|
||||
},
|
||||
"PFITS": {
|
||||
"supervisor": 14,
|
||||
"coworkers": 15
|
||||
},
|
||||
"UWES": {
|
||||
"vigor": 16,
|
||||
"dedication": 17,
|
||||
"absorption": 18
|
||||
},
|
||||
"COPE": {
|
||||
"active": 19,
|
||||
"support": 20,
|
||||
"emotions": 21
|
||||
},
|
||||
"work_life_balance": {
|
||||
"life_work": 22,
|
||||
"work_life": 23
|
||||
},
|
||||
"recovery_experience": {
|
||||
"detachment": 24,
|
||||
"relaxation": 25
|
||||
},
|
||||
"PANAS_positive_affect": 8,
|
||||
"PANAS_negative_affect": 9,
|
||||
"JCQ_job_demand": 10,
|
||||
"JCQ_job_control": 11,
|
||||
"JCQ_supervisor_support": 12,
|
||||
"JCQ_coworker_support": 13,
|
||||
"PFITS_supervisor": 14,
|
||||
"PFITS_coworkers": 15,
|
||||
"UWES_vigor": 16,
|
||||
"UWES_dedication": 17,
|
||||
"UWES_absorption": 18,
|
||||
"COPE_active": 19,
|
||||
"COPE_support": 20,
|
||||
"COPE_emotions": 21,
|
||||
"balance_life_work": 22,
|
||||
"balance_work_life": 23,
|
||||
"recovery_experience_detachment": 24,
|
||||
"recovery_experience_relaxation": 25,
|
||||
"symptoms": 26,
|
||||
"stress_appraisal": {
|
||||
"stressfulness_event": 87,
|
||||
"threat": 88,
|
||||
"challenge": 89,
|
||||
"event_time": 90,
|
||||
"event_duration": 91,
|
||||
"event_work_related": 92,
|
||||
"stressfulness_period": 93,
|
||||
},
|
||||
"appraisal_stressfulness_event": 87,
|
||||
"appraisal_threat": 88,
|
||||
"appraisal_challenge": 89,
|
||||
"appraisal_event_time": 90,
|
||||
"appraisal_event_duration": 91,
|
||||
"appraisal_event_work_related": 92,
|
||||
"appraisal_stressfulness_period": 93,
|
||||
"late_work": 94,
|
||||
"work_hours": 95,
|
||||
"left_work": 96,
|
||||
|
|
|
@ -1,12 +1,17 @@
|
|||
from esm_preprocess import *
|
||||
|
||||
questionnaire_names = snakemake.params["questionnaire_names"]
|
||||
|
||||
df_esm = pd.read_csv(snakemake.input[0])
|
||||
df_esm_preprocessed = preprocess_esm(df_esm)
|
||||
# TODO Enable getting the right questionnaire here.
|
||||
df_esm_PANAS = df_esm_preprocessed[
|
||||
(df_esm_preprocessed["questionnaire_id"] == 8)
|
||||
| (df_esm_preprocessed["questionnaire_id"] == 9)
|
||||
]
|
||||
df_esm_clean = clean_up_esm(df_esm_PANAS)
|
||||
|
||||
df_esm_clean.to_csv(snakemake.output[0])
|
||||
for questionnaire_name in questionnaire_names:
|
||||
try:
|
||||
questionnaire_id = QUESTIONNAIRE_IDS[questionnaire_name]
|
||||
except ValueError:
|
||||
print("The requested questionnaire name should be one of the following:")
|
||||
print(QUESTIONNAIRE_IDS.keys())
|
||||
else:
|
||||
df_esm_selected = df_esm_preprocessed[df_esm_preprocessed["questionnaire_id"] == questionnaire_id]
|
||||
df_esm_clean = clean_up_esm(df_esm_selected)
|
||||
df_esm_clean.to_csv(snakemake.output[0])
|
||||
|
|
Loading…
Reference in New Issue