Preparation of the overall cleaning script.
parent
68fd69dada
commit
7ac7cd5a37
16
config.yaml
16
config.yaml
|
@ -694,18 +694,14 @@ ALL_CLEANING_OVERALL:
|
||||||
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
||||||
CORR_THRESHOLD: 0.95
|
CORR_THRESHOLD: 0.95
|
||||||
SRC_SCRIPT: src/features/all_cleaning_overall/rapids/main.R
|
SRC_SCRIPT: src/features/all_cleaning_overall/rapids/main.R
|
||||||
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type
|
STRAW:
|
||||||
COMPUTE: True
|
COMPUTE: True
|
||||||
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
|
|
||||||
COMPUTE: False
|
|
||||||
TYPE: zero # options: zero, mean, median or k-nearest
|
|
||||||
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
|
||||||
COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN
|
|
||||||
COLS_VAR_THRESHOLD: True
|
|
||||||
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
|
|
||||||
PHONE_DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
PHONE_DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
||||||
PHONE_DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
PHONE_DATA_YIELD_RATIO_THRESHOLD: 0.4 # set to 0 to disable
|
||||||
EMPATICA_DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
EMPATICA_DATA_YIELD_RATIO_THRESHOLD: 0.25 # set to 0 to disable
|
||||||
|
ROWS_NAN_THRESHOLD: 0.3 # set to 1 to disable
|
||||||
|
COLS_NAN_THRESHOLD: 0.9 # set to 1 to remove only columns that contains all (100% of) NaN
|
||||||
|
COLS_VAR_THRESHOLD: True
|
||||||
DROP_HIGHLY_CORRELATED_FEATURES:
|
DROP_HIGHLY_CORRELATED_FEATURES:
|
||||||
COMPUTE: True
|
COMPUTE: True
|
||||||
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
||||||
|
|
|
@ -34,8 +34,7 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
features = edy.calculate_empatica_data_yield(features)
|
features = edy.calculate_empatica_data_yield(features)
|
||||||
|
|
||||||
if not phone_data_yield_column in features.columns and not "empatica_data_yield" in features.columns:
|
if not phone_data_yield_column in features.columns and not "empatica_data_yield" in features.columns:
|
||||||
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} and empatica_data_yield columns.
|
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} and empatica_data_yield columns. For phone data yield, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
||||||
For phone data yield, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
|
||||||
|
|
||||||
# Drop rows where phone data yield is less then given threshold
|
# Drop rows where phone data yield is less then given threshold
|
||||||
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
|
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
|
@ -60,7 +59,6 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
features[esm] = esm_cols[esm]
|
features[esm] = esm_cols[esm]
|
||||||
|
|
||||||
# (4) CONTEXTUAL IMPUTATION
|
# (4) CONTEXTUAL IMPUTATION
|
||||||
graph_bf_af(features, "contextual_imputation_before")
|
|
||||||
|
|
||||||
# Impute selected phone features with a high number
|
# Impute selected phone features with a high number
|
||||||
impute_w_hn = [col for col in features.columns if \
|
impute_w_hn = [col for col in features.columns if \
|
||||||
|
@ -80,8 +78,6 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
impute_rest = [col for col in features.columns if "phone_" in col]
|
impute_rest = [col for col in features.columns if "phone_" in col]
|
||||||
features[impute_locations] = impute(features[impute_locations], method="zero")
|
features[impute_locations] = impute(features[impute_locations], method="zero")
|
||||||
|
|
||||||
graph_bf_af(features, "contextual_imputation_after")
|
|
||||||
|
|
||||||
## (5) STANDARDIZATION
|
## (5) STANDARDIZATION
|
||||||
if provider["STANDARDIZATION"]:
|
if provider["STANDARDIZATION"]:
|
||||||
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
||||||
|
@ -142,6 +138,6 @@ def graph_bf_af(features, phase_name):
|
||||||
sns.set(rc={"figure.figsize":(16, 8)})
|
sns.set(rc={"figure.figsize":(16, 8)})
|
||||||
print(features)
|
print(features)
|
||||||
sns.heatmap(features.isna(), cbar=False) #features.select_dtypes(include=np.number)
|
sns.heatmap(features.isna(), cbar=False) #features.select_dtypes(include=np.number)
|
||||||
plt.savefig(f'features_nans_{phase_name}.png', bbox_inches='tight')
|
plt.savefig(f'features_individual_nans_{phase_name}.png', bbox_inches='tight')
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,88 +1,183 @@
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import math, sys
|
import math, sys, random
|
||||||
|
import typing
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
from sklearn.impute import KNNImputer
|
||||||
|
from sklearn.preprocessing import StandardScaler
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import seaborn as sns
|
||||||
|
|
||||||
|
sys.path.append('/rapids/')
|
||||||
|
from src.features import empatica_data_yield as edy
|
||||||
|
|
||||||
|
pd.set_option('display.max_columns', 20)
|
||||||
|
|
||||||
def straw_cleaning(sensor_data_files, provider):
|
def straw_cleaning(sensor_data_files, provider):
|
||||||
|
|
||||||
features = pd.read_csv(sensor_data_files["sensor_data"][0])
|
features = pd.read_csv(sensor_data_files["sensor_data"][0])
|
||||||
|
|
||||||
# TODO: reorder the cleaning steps so it makes sense for the analysis
|
|
||||||
# TODO: add conditions that differentiates cleaning steps for standardized and nonstandardized features, for this
|
|
||||||
# the snakemake rules will also have to come with additional parameter (in rules/features.smk)
|
|
||||||
|
|
||||||
# Impute selected features event
|
|
||||||
impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"]
|
|
||||||
if impute_phone_features["COMPUTE"]:
|
|
||||||
if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns:
|
|
||||||
raise KeyError("RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].")
|
|
||||||
|
|
||||||
# TODO: if the type of the imputation will vary for different groups of features make conditional imputations here
|
|
||||||
phone_cols = [col for col in features if \
|
|
||||||
col.startswith('phone_applications_foreground_rapids_') or
|
|
||||||
col.startswith('phone_battery_rapids_') or
|
|
||||||
col.startswith('phone_calls_rapids_') or
|
|
||||||
col.startswith('phone_keyboard_rapids_') or
|
|
||||||
col.startswith('phone_messages_rapids_') or
|
|
||||||
col.startswith('phone_screen_rapids_') or
|
|
||||||
col.startswith('phone_wifi_')]
|
|
||||||
|
|
||||||
mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
|
|
||||||
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
|
|
||||||
|
|
||||||
# Drop rows with the value of data_yield_column less than data_yield_ratio_threshold
|
|
||||||
data_yield_unit = provider["DATA_YIELD_FEATURE"].split("_")[3].lower()
|
|
||||||
data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + data_yield_unit
|
|
||||||
|
|
||||||
if not data_yield_column in features.columns:
|
|
||||||
raise KeyError(f"RAPIDS provider needs to impute the selected event features based on {data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
|
||||||
|
|
||||||
if provider["DATA_YIELD_RATIO_THRESHOLD"]:
|
|
||||||
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
|
|
||||||
|
|
||||||
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm')] # For later preservation of esm_cols
|
|
||||||
|
|
||||||
# Remove cols if threshold of NaN values is passed
|
|
||||||
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
|
||||||
|
|
||||||
# Remove cols where variance is 0
|
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
|
||||||
if provider["COLS_VAR_THRESHOLD"]:
|
|
||||||
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
|
with open('config.yaml', 'r') as stream:
|
||||||
|
config = yaml.load(stream, Loader=yaml.FullLoader)
|
||||||
|
|
||||||
|
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
|
||||||
|
|
||||||
|
# (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
|
||||||
|
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
|
||||||
|
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
|
||||||
|
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
|
||||||
|
|
||||||
|
# (2.1) QUALITY CHECK (DATA YIELD COLUMN) deletes the rows where E4 or phone data is low quality
|
||||||
|
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
|
||||||
|
phone_data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + phone_data_yield_unit
|
||||||
|
|
||||||
|
features = edy.calculate_empatica_data_yield(features)
|
||||||
|
|
||||||
|
if not phone_data_yield_column in features.columns and not "empatica_data_yield" in features.columns:
|
||||||
|
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} and empatica_data_yield columns. For phone data yield, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
||||||
|
|
||||||
|
# Drop rows where phone data yield is less then given threshold
|
||||||
|
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
|
features = features[features[phone_data_yield_column] >= provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
|
||||||
|
|
||||||
|
# Drop rows where empatica data yield is less then given threshold
|
||||||
|
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
|
features = features[features["empatica_data_yield"] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
|
||||||
|
|
||||||
|
# (2.2) DO THE ROWS CONSIST OF ENOUGH NON-NAN VALUES?
|
||||||
|
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
|
||||||
|
features.dropna(axis=0, thresh=min_count, inplace=True) # Thresh => at least this many not-nans
|
||||||
|
|
||||||
|
# (3) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
|
||||||
|
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
|
||||||
|
|
||||||
|
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
||||||
|
|
||||||
# Preserve esm cols if deleted (has to come after drop cols operations)
|
# Preserve esm cols if deleted (has to come after drop cols operations)
|
||||||
for esm in esm_cols:
|
for esm in esm_cols:
|
||||||
if esm not in features:
|
if esm not in features:
|
||||||
features[esm] = esm_cols[esm]
|
features[esm] = esm_cols[esm]
|
||||||
|
|
||||||
# Drop highly correlated features - To-Do še en thershold var, ki je v config + kako se tretirajo NaNs?
|
# (4) CONTEXTUAL IMPUTATION
|
||||||
|
|
||||||
|
# Impute selected phone features with a high number
|
||||||
|
impute_w_hn = [col for col in features.columns if \
|
||||||
|
"timeoffirstuse" in col or
|
||||||
|
"timeoflastuse" in col or
|
||||||
|
"timefirstcall" in col or
|
||||||
|
"timelastcall" in col or
|
||||||
|
"firstuseafter" in col or
|
||||||
|
"timefirstmessages" in col or
|
||||||
|
"timelastmessages" in col]
|
||||||
|
features[impute_w_hn] = impute(features[impute_w_hn], method="high_number")
|
||||||
|
|
||||||
|
# Impute special case (mostcommonactivity)
|
||||||
|
impute_w_sn = [col for col in features.columns if "mostcommonactivity" in col]
|
||||||
|
features[impute_w_sn] = features[impute_w_sn].fillna(4) # Special case of imputation
|
||||||
|
|
||||||
|
# Impute selected phone features with 0
|
||||||
|
impute_zero = [col for col in features if \
|
||||||
|
col.startswith('phone_applications_foreground_rapids_') or
|
||||||
|
col.startswith('phone_battery_rapids_') or
|
||||||
|
col.startswith('phone_bluetooth_rapids_') or
|
||||||
|
col.startswith('phone_light_rapids_') or
|
||||||
|
col.startswith('phone_calls_rapids_') or
|
||||||
|
col.startswith('phone_messages_rapids_') or
|
||||||
|
col.startswith('phone_screen_rapids_') or
|
||||||
|
col.startswith('phone_wifi_visible')]
|
||||||
|
features[impute_locations] = impute(features[impute_locations], method="zero")
|
||||||
|
|
||||||
|
# Impute phone locations with median - should this rather be imputed at kNN step??
|
||||||
|
# impute_locations = [col for col in features.columns if "phone_locations_" in col]
|
||||||
|
|
||||||
|
# # features[impute_locations] = features[impute_locations].mask(np.random.random(features[impute_locations].shape) < .1)
|
||||||
|
|
||||||
|
# # features.at[0,'pid'] = "p01"
|
||||||
|
# # features.at[1,'pid'] = "p01"
|
||||||
|
# # features.at[2,'pid'] = "p02"
|
||||||
|
# # features.at[3,'pid'] = "p02"
|
||||||
|
|
||||||
|
# # graph_bf_af(features[impute_locations], "phoneloc_before")
|
||||||
|
|
||||||
|
# features[impute_locations] = features[impute_locations + ["pid"]].groupby("pid").transform(lambda x: x.fillna(x.median()))[impute_locations]
|
||||||
|
|
||||||
|
## (5) STANDARDIZATION
|
||||||
|
if provider["STANDARDIZATION"]:
|
||||||
|
features.loc[:, ~features.columns.isin(excluded_columns + ["pid"])] = \
|
||||||
|
features.loc[:, ~features.columns.isin(excluded_columns)].groupby('pid').transform(lambda x: 0 if (x.std() == 0) else (x - x.mean()) / x.std())
|
||||||
|
|
||||||
|
graph_bf_af(features[impute_locations], "knn_before")
|
||||||
|
|
||||||
|
# (6) IMPUTATION: IMPUTE DATA WITH KNN METHOD
|
||||||
|
impute_cols = [col for col in features.columns if col not in excluded_columns and col != "pid"]
|
||||||
|
features[impute_cols] = impute(features[impute_cols], method="knn")
|
||||||
|
|
||||||
|
graph_bf_af(features[impute_locations], "knn_after")
|
||||||
|
|
||||||
|
# (7) REMOVE COLS WHERE VARIANCE IS 0
|
||||||
|
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')]
|
||||||
|
|
||||||
|
if provider["COLS_VAR_THRESHOLD"]:
|
||||||
|
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
|
||||||
|
|
||||||
|
# (8) DROP HIGHLY CORRELATED FEATURES
|
||||||
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
|
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
|
||||||
if drop_corr_features["COMPUTE"]:
|
if drop_corr_features["COMPUTE"] and features.shape[0] > 5: # If small amount of segments (rows) is present, do not execute correlation check
|
||||||
|
|
||||||
numerical_cols = features.select_dtypes(include=np.number).columns.tolist()
|
numerical_cols = features.select_dtypes(include=np.number).columns.tolist()
|
||||||
|
|
||||||
# Remove columns where NaN count threshold is passed
|
# Remove columns where NaN count threshold is passed
|
||||||
valid_features = features[numerical_cols].loc[:, features[numerical_cols].isna().sum() < drop_corr_features['MIN_OVERLAP_FOR_CORR_THRESHOLD'] * features[numerical_cols].shape[0]]
|
valid_features = features[numerical_cols].loc[:, features[numerical_cols].isna().sum() < drop_corr_features['MIN_OVERLAP_FOR_CORR_THRESHOLD'] * features[numerical_cols].shape[0]]
|
||||||
|
|
||||||
cor_matrix = valid_features.corr(method='spearman').abs()
|
corr_matrix = valid_features.corr().abs()
|
||||||
upper_tri = cor_matrix.where(np.triu(np.ones(cor_matrix.shape), k=1).astype(np.bool))
|
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
|
||||||
to_drop = [column for column in upper_tri.columns if any(upper_tri[column] > drop_corr_features["CORR_THRESHOLD"])]
|
to_drop = [column for column in upper.columns if any(upper[column] > drop_corr_features["CORR_THRESHOLD"])]
|
||||||
|
|
||||||
features.drop(to_drop, axis=1, inplace=True)
|
features.drop(to_drop, axis=1, inplace=True)
|
||||||
|
|
||||||
# Remove rows if threshold of NaN values is passed
|
# Preserve esm cols if deleted (has to come after drop cols operations)
|
||||||
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
|
for esm in esm_cols:
|
||||||
features.dropna(axis=0, thresh=min_count, inplace=True)
|
if esm not in features:
|
||||||
|
features[esm] = esm_cols[esm]
|
||||||
|
|
||||||
|
# (9) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
|
||||||
|
if features.isna().any().any():
|
||||||
|
raise ValueError
|
||||||
|
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
return features
|
return features
|
||||||
|
|
||||||
def impute(df, method='zero'):
|
def impute(df, method='zero'):
|
||||||
|
|
||||||
def k_nearest(df): # TODO: if needed, implement k-nearest imputation / interpolation
|
def k_nearest(df):
|
||||||
pass
|
imputer = KNNImputer(n_neighbors=3)
|
||||||
|
return pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
|
||||||
|
|
||||||
return { # rest of the columns should be imputed with the selected method
|
return {
|
||||||
'zero': df.fillna(0),
|
'zero': df.fillna(0),
|
||||||
|
'high_number': df.fillna(1000000),
|
||||||
'mean': df.fillna(df.mean()),
|
'mean': df.fillna(df.mean()),
|
||||||
'median': df.fillna(df.median()),
|
'median': df.fillna(df.median()),
|
||||||
'k-nearest': k_nearest(df)
|
'knn': k_nearest(df)
|
||||||
}[method]
|
}[method]
|
||||||
|
|
||||||
|
def graph_bf_af(features, phase_name):
|
||||||
|
sns.set(rc={"figure.figsize":(16, 8)})
|
||||||
|
print(features)
|
||||||
|
sns.heatmap(features.isna(), cbar=False) #features.select_dtypes(include=np.number)
|
||||||
|
plt.savefig(f'features_overall_nans_{phase_name}.png', bbox_inches='tight')
|
||||||
|
|
||||||
|
|
||||||
|
class SklearnWrapper:
|
||||||
|
def __init__(self, transform: typing.Callable):
|
||||||
|
self.transform = transform
|
||||||
|
|
||||||
|
def __call__(self, df):
|
||||||
|
transformed = self.transform.fit_transform(df.values)
|
||||||
|
return pd.DataFrame(transformed, columns=df.columns, index=df.index)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -17,7 +17,7 @@ def calculate_empatica_data_yield(features):
|
||||||
|
|
||||||
# TODO: boljša nastavitev delovnih ur sedaj je od 4:00 do 4:00... to povzroči veliko manjkajočih podatkov in posledično nizek (telefonski in E4) data_yield ...
|
# TODO: boljša nastavitev delovnih ur sedaj je od 4:00 do 4:00... to povzroči veliko manjkajočih podatkov in posledično nizek (telefonski in E4) data_yield ...
|
||||||
empatica_data_yield_cols = ['acc_data_yield', 'temp_data_yield', 'eda_data_yield', 'ibi_data_yield']
|
empatica_data_yield_cols = ['acc_data_yield', 'temp_data_yield', 'eda_data_yield', 'ibi_data_yield']
|
||||||
features["empatica_data_yield"] = features[empatica_data_yield_cols].mean(axis=1)
|
features["empatica_data_yield"] = features[empatica_data_yield_cols].mean(axis=1).fillna(0)
|
||||||
features.drop(empatica_data_yield_cols, axis=1, inplace=True) # In case of if the advanced operations will later not be needed (e.g., weighted average)
|
features.drop(empatica_data_yield_cols, axis=1, inplace=True) # In case of if the advanced operations will later not be needed (e.g., weighted average)
|
||||||
|
|
||||||
return features
|
return features
|
||||||
|
|
Loading…
Reference in New Issue