Configuration and cleaning changes
parent
fb577bc9ad
commit
607da820f2
24
config.yaml
24
config.yaml
|
@ -672,29 +672,29 @@ ALL_CLEANING_INDIVIDUAL:
|
|||
RAPIDS:
|
||||
COMPUTE: True
|
||||
IMPUTE_SELECTED_EVENT_FEATURES:
|
||||
COMPUTE: True
|
||||
COMPUTE: False
|
||||
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
||||
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
|
||||
COLS_VAR_THRESHOLD: True
|
||||
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
|
||||
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
||||
DATA_YIELD_RATIO_THRESHOLD: 0.3 # set to 0 to disable
|
||||
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
||||
DROP_HIGHLY_CORRELATED_FEATURES:
|
||||
COMPUTE: True
|
||||
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
||||
CORR_THRESHOLD: 0.95
|
||||
SRC_SCRIPT: src/features/all_cleaning_individual/rapids/main.R
|
||||
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type + is not considering MIN_OVERLAP_FOR_CORR_THRESHOLD param and does not have special treatment for phone_esm (see RAPIDS script)
|
||||
COMPUTE: True
|
||||
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type
|
||||
COMPUTE: False
|
||||
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
|
||||
COMPUTE: True
|
||||
COMPUTE: False
|
||||
TYPE: median # options: zero, mean, median or k-nearest
|
||||
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
||||
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
|
||||
COLS_VAR_THRESHOLD: True
|
||||
ROWS_NAN_THRESHOLD: 0 # set to 1 to disable
|
||||
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
||||
DATA_YIELD_RATIO_THRESHOLD: 0.3 # set to 0 to disable
|
||||
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
||||
DROP_HIGHLY_CORRELATED_FEATURES:
|
||||
COMPUTE: True
|
||||
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
||||
|
@ -707,29 +707,29 @@ ALL_CLEANING_OVERALL:
|
|||
RAPIDS:
|
||||
COMPUTE: False
|
||||
IMPUTE_SELECTED_EVENT_FEATURES:
|
||||
COMPUTE: True
|
||||
COMPUTE: False
|
||||
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
||||
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
|
||||
COLS_VAR_THRESHOLD: True
|
||||
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
|
||||
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
||||
DATA_YIELD_RATIO_THRESHOLD: 0.3 # set to 0 to disable
|
||||
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
||||
DROP_HIGHLY_CORRELATED_FEATURES:
|
||||
COMPUTE: True
|
||||
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
||||
CORR_THRESHOLD: 0.95
|
||||
SRC_SCRIPT: src/features/all_cleaning_overall/rapids/main.R
|
||||
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type + is not considering MIN_OVERLAP_FOR_CORR_THRESHOLD param
|
||||
COMPUTE: True
|
||||
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type
|
||||
COMPUTE: False
|
||||
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
|
||||
COMPUTE: True
|
||||
COMPUTE: False
|
||||
TYPE: median # options: zero, mean, median or k-nearest
|
||||
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
||||
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
|
||||
COLS_VAR_THRESHOLD: True
|
||||
ROWS_NAN_THRESHOLD: 0 # set to 1 to disable
|
||||
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
||||
DATA_YIELD_RATIO_THRESHOLD: 0.3 # set to 0 to disable
|
||||
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
||||
DROP_HIGHLY_CORRELATED_FEATURES:
|
||||
COMPUTE: True
|
||||
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
||||
|
|
|
@ -27,7 +27,7 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
col.startswith('phone_wifi_')]
|
||||
|
||||
mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
|
||||
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"])
|
||||
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
|
||||
|
||||
# Drop rows with the value of data_yield_column less than data_yield_ratio_threshold
|
||||
data_yield_unit = provider["DATA_YIELD_FEATURE"].split("_")[3].lower()
|
||||
|
@ -38,13 +38,20 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
|
||||
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
|
||||
|
||||
# Remove cols if threshold of NaN values is passed
|
||||
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
||||
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm')] # For later preservation of esm_cols
|
||||
|
||||
# Remove cols if threshold of NaN values is passed
|
||||
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
||||
|
||||
# Remove cols where variance is 0
|
||||
if provider["COLS_VAR_THRESHOLD"]:
|
||||
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
|
||||
|
||||
# Preserve esm cols if deleted (has to come after drop cols operations)
|
||||
for esm in esm_cols:
|
||||
if esm not in features:
|
||||
features[esm] = esm_cols[esm]
|
||||
|
||||
# Drop highly correlated features - To-Do še en thershold var, ki je v config + kako se tretirajo NaNs?
|
||||
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
|
||||
if drop_corr_features["COMPUTE"]:
|
||||
|
@ -61,14 +68,14 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
features.drop(to_drop, axis=1, inplace=True)
|
||||
|
||||
# Remove rows if threshold of NaN values is passed
|
||||
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # min not nan values in row
|
||||
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
|
||||
features.dropna(axis=0, thresh=min_count, inplace=True)
|
||||
|
||||
return features
|
||||
|
||||
def impute(df, method='zero'):
|
||||
|
||||
def k_nearest(df): # TODO: if needed implement k-nearest imputation / interpolation
|
||||
def k_nearest(df): # TODO: if needed, implement k-nearest imputation / interpolation
|
||||
pass
|
||||
|
||||
return { # rest of the columns should be imputed with the selected method
|
||||
|
@ -77,5 +84,4 @@ def impute(df, method='zero'):
|
|||
'median': df.fillna(df.median()),
|
||||
'k-nearest': k_nearest(df)
|
||||
}[method]
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue