Reformat.
parent
d470eef27e
commit
5f293211a7
|
@ -1,21 +1,21 @@
|
|||
import json
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
|
||||
ESM_TYPE = {
|
||||
"text": 1,
|
||||
"radio": 2,
|
||||
"checkbox": 3,
|
||||
"likert": 4,
|
||||
"quick_answers": 5,
|
||||
"scale": 6,
|
||||
"datetime": 7,
|
||||
"pam": 8,
|
||||
"number": 9,
|
||||
"web": 10,
|
||||
"date": 11,
|
||||
}
|
||||
"text": 1,
|
||||
"radio": 2,
|
||||
"checkbox": 3,
|
||||
"likert": 4,
|
||||
"quick_answers": 5,
|
||||
"scale": 6,
|
||||
"datetime": 7,
|
||||
"pam": 8,
|
||||
"number": 9,
|
||||
"web": 10,
|
||||
"date": 11,
|
||||
}
|
||||
|
||||
ESM_STATUS_ANSWERED = 2
|
||||
|
||||
|
@ -101,7 +101,7 @@ def clean_up_esm(df_esm_preprocessed: pd.DataFrame) -> pd.DataFrame:
|
|||
|
||||
df_esm = pd.read_csv(snakemake.input[0])
|
||||
df_esm_preprocessed = preprocess_esm(df_esm)
|
||||
#TODO Enable getting the right questionnaire here.
|
||||
# TODO Enable getting the right questionnaire here.
|
||||
df_esm_PANAS = df_esm_preprocessed[
|
||||
(df_esm_preprocessed["questionnaire_id"] == 8)
|
||||
| (df_esm_preprocessed["questionnaire_id"] == 9)
|
||||
|
@ -109,5 +109,3 @@ df_esm_PANAS = df_esm_preprocessed[
|
|||
df_esm_clean = clean_up_esm(df_esm_PANAS)
|
||||
|
||||
df_esm_clean.to_csv(snakemake.output[0])
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue