Update heatmaps of overall data yield
parent
654f6f3c3d
commit
4d37696158
|
@ -381,6 +381,8 @@ if config["HEATMAP_SENSOR_ROW_COUNT_PER_TIME_SEGMENT"]["PLOT"]:
|
||||||
files_to_compute.append("reports/data_exploration/heatmap_sensor_row_count_per_time_segment.html")
|
files_to_compute.append("reports/data_exploration/heatmap_sensor_row_count_per_time_segment.html")
|
||||||
|
|
||||||
if config["HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT"]["PLOT"]:
|
if config["HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT"]["PLOT"]:
|
||||||
|
if not config["PHONE_DATA_YIELD"]["PROVIDERS"]["RAPIDS"]["COMPUTE"]:
|
||||||
|
raise ValueError("Error: [PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] must be True in config.yaml to get heatmaps of overall data yield.")
|
||||||
files_to_compute.append("reports/data_exploration/heatmap_phone_data_yield_per_participant_per_time_segment.html")
|
files_to_compute.append("reports/data_exploration/heatmap_phone_data_yield_per_participant_per_time_segment.html")
|
||||||
|
|
||||||
if config["HEATMAP_FEATURE_CORRELATION_MATRIX"]["PLOT"]:
|
if config["HEATMAP_FEATURE_CORRELATION_MATRIX"]["PLOT"]:
|
||||||
|
|
|
@ -49,11 +49,13 @@ rule merge_heatmap_sensor_row_count_per_time_segment:
|
||||||
|
|
||||||
rule heatmap_phone_data_yield_per_participant_per_time_segment:
|
rule heatmap_phone_data_yield_per_participant_per_time_segment:
|
||||||
input:
|
input:
|
||||||
phone_data_yield = expand("data/processed/features/{pid}/phone_data_yield.csv", pid=config["PIDS"]),
|
participant_files = expand("data/external/participant_files/{pid}.yaml", pid=config["PIDS"]),
|
||||||
participant_file = expand("data/external/participant_files/{pid}.yaml", pid=config["PIDS"]),
|
time_segments_file = config["TIME_SEGMENTS"]["FILE"],
|
||||||
time_segments_labels = expand("data/interim/time_segments/{pid}_time_segments_labels.csv", pid=config["PIDS"])
|
phone_data_yield = "data/processed/features/all_participants/all_sensor_features.csv",
|
||||||
params:
|
params:
|
||||||
time = config["HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT"]["TIME"]
|
pids = config["PIDS"],
|
||||||
|
time = config["HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT"]["TIME"],
|
||||||
|
time_segments_type = config["TIME_SEGMENTS"]["TYPE"]
|
||||||
output:
|
output:
|
||||||
"reports/data_exploration/heatmap_phone_data_yield_per_participant_per_time_segment.html"
|
"reports/data_exploration/heatmap_phone_data_yield_per_participant_per_time_segment.html"
|
||||||
script:
|
script:
|
||||||
|
|
|
@ -1,93 +1,87 @@
|
||||||
|
from plotly_color_utils import sample_colorscale
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import plotly.express as px
|
||||||
import plotly.graph_objects as go
|
|
||||||
import yaml
|
import yaml
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def getPidAndLabel(participant_file_paths, pids):
|
||||||
|
pid2label, y_axis_labels = {}, []
|
||||||
def getPhoneDataYieldHeatmap(data_for_plot, y_axis_labels, time_segment, type, time, html_file):
|
for participant_file_path, pid in zip(participant_file_paths, pids):
|
||||||
|
|
||||||
fig = go.Figure(data=go.Heatmap(z=data_for_plot.values.tolist(),
|
|
||||||
x=data_for_plot.columns.tolist(),
|
|
||||||
y=y_axis_labels,
|
|
||||||
hovertext=data_for_plot.values.tolist(),
|
|
||||||
hovertemplate="Time since first segment: %{x}<br>Participant: %{y}<br>Ratiovalidyielded" + type + ": %{z}<extra></extra>" if time == "RELATIVE_TIME" else "Time: %{x}<br>Participant: %{y}<br>Ratiovalidyielded" + type + ": %{z}<extra></extra>",
|
|
||||||
zmin=0, zmax=1,
|
|
||||||
colorscale="Viridis"))
|
|
||||||
|
|
||||||
if time == "RELATIVE_TIME":
|
|
||||||
fig.update_layout(title="Heatmap of valid yielded " + type + " ratio for " + time_segment + " segments.<br>y-axis shows participant information (format: pid.label).<br>x-axis shows the time since their first segment.<br>z-axis (color) shows valid yielded " + type + " ratio during a segment instance.")
|
|
||||||
else:
|
|
||||||
fig.update_layout(title="Heatmap of valid yielded " + type + " ratio for " + time_segment + " segments.<br>y-axis shows participant information (format: pid.label).<br>x-axis shows the time.<br>z-axis (color) shows valid yielded " + type + " ratio during a segment instance.")
|
|
||||||
|
|
||||||
fig["layout"]["xaxis"].update(side="bottom")
|
|
||||||
fig["layout"].update(xaxis_title="Time Since First Segment" if time == "RELATIVE_TIME" else "Time")
|
|
||||||
fig["layout"].update(margin=dict(t=160))
|
|
||||||
|
|
||||||
html_file.write(fig.to_html(full_html=False, include_plotlyjs="cdn"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
time = snakemake.params["time"]
|
|
||||||
y_axis_labels, phone_data_yield_minutes, phone_data_yield_hours = [], {}, {}
|
|
||||||
for phone_data_yield_path, participant_file_path, time_segments_path in zip(snakemake.input["phone_data_yield"], snakemake.input["participant_file"], snakemake.input["time_segments_labels"]):
|
|
||||||
|
|
||||||
# set pid.label as y_axis_label
|
|
||||||
pid = phone_data_yield_path.split("/")[3]
|
|
||||||
time_segments = pd.read_csv(time_segments_path, header=0)["label"]
|
|
||||||
|
|
||||||
with open(participant_file_path, "r", encoding="utf-8") as f:
|
with open(participant_file_path, "r", encoding="utf-8") as f:
|
||||||
participant_file = yaml.safe_load(f)
|
participant_file = yaml.safe_load(f)
|
||||||
label = participant_file["PHONE"]["LABEL"]
|
label = str(participant_file["PHONE"]["LABEL"])
|
||||||
|
|
||||||
y_axis_label = pid + "." + label
|
pid2label[pid] = label
|
||||||
y_axis_labels.append(y_axis_label)
|
y_axis_labels.append(pid + "." + label)
|
||||||
|
return pid2label, y_axis_labels
|
||||||
|
|
||||||
|
def getPhoneDataYieldHeatmap(phone_data_yield, time, time_segment, html_file):
|
||||||
|
|
||||||
|
if time == "RELATIVE_TIME":
|
||||||
|
# Number of minutes after the first start date time of local segments
|
||||||
|
phone_data_yield["local_segment_end_datetime"] = (phone_data_yield["local_segment_end_datetime"] - phone_data_yield["local_segment_start_datetime"].min()) + pd.Timestamp(2000,1,1)
|
||||||
|
phone_data_yield["local_segment_start_datetime"] = (phone_data_yield["local_segment_start_datetime"] - phone_data_yield["local_segment_start_datetime"].min()) + pd.Timestamp(2000,1,1)
|
||||||
|
|
||||||
|
for type in ["minutes", "hours"]:
|
||||||
|
|
||||||
|
column_name = "phone_data_yield_rapids_ratiovalidyielded" + type
|
||||||
|
|
||||||
|
fig = px.timeline(phone_data_yield,
|
||||||
|
x_start="local_segment_start_datetime",
|
||||||
|
x_end="local_segment_end_datetime",
|
||||||
|
y="y_axis_label",
|
||||||
|
color=column_name,
|
||||||
|
color_continuous_scale="Viridis",
|
||||||
|
opacity=0.7,
|
||||||
|
hover_data={'local_segment_start_datetime':False, 'local_segment_end_datetime':False, 'local_segment':True})
|
||||||
|
|
||||||
|
fig.update_layout(title="Heatmap of valid yielded " + type + " ratio for " + time_segment + " segments and " + time.lower().replace("_", " ") + ".<br>y-axis shows participant information (format: pid.label).<br>x-axis shows the time" + (" since their first segment" if time == "RELATIVE_TIME" else "") + ".<br>z-axis (color) shows valid yielded " + type + " ratio during a segment instance.",
|
||||||
|
xaxis=dict(side="bottom", title="Time Since First Segment" if time == "RELATIVE_TIME" else "Time"),
|
||||||
|
yaxis=dict(side="left", title="Participant information"),
|
||||||
|
margin=dict(t=160))
|
||||||
|
|
||||||
|
if time == "RELATIVE_TIME":
|
||||||
|
fig.update_layout(xaxis_tickformat="%y years %j days<br>%X")
|
||||||
|
|
||||||
|
html_file.write(fig.to_html(full_html=False, include_plotlyjs="cdn"))
|
||||||
|
|
||||||
|
return html_file
|
||||||
|
|
||||||
|
|
||||||
phone_data_yield = pd.read_csv(phone_data_yield_path, index_col=["local_segment_start_datetime"], parse_dates=["local_segment_start_datetime"])
|
|
||||||
# make sure the phone_data_yield file contains "phone_data_yield_rapids_ratiovalidyieldedminutes" and "phone_data_yield_rapids_ratiovalidyieldedhours" columns
|
|
||||||
|
pid2label, y_axis_labels = getPidAndLabel(snakemake.input["participant_files"], snakemake.params["pids"])
|
||||||
|
time_segments_type = snakemake.params["time_segments_type"] # FREQUENCY or PERIODIC or EVENT
|
||||||
|
time = snakemake.params["time"] # ABSOLUTE_TIME or RELATIVE_TIME
|
||||||
|
time_segments = pd.read_csv(snakemake.input["time_segments_file"])["label"].unique()
|
||||||
|
|
||||||
|
phone_data_yield = pd.read_csv(snakemake.input["phone_data_yield"], parse_dates=["local_segment_start_datetime", "local_segment_end_datetime"]).sort_values(by=["pid", "local_segment_start_datetime"])
|
||||||
|
if time_segments_type == "FREQUENCY":
|
||||||
|
phone_data_yield["local_segment_label"] = phone_data_yield["local_segment_label"].str.split("\d+", expand=True, n=1)[0]
|
||||||
|
|
||||||
|
html_file = open(snakemake.output[0], "w", encoding="utf-8")
|
||||||
|
if phone_data_yield.empty:
|
||||||
|
html_file.write("There is no sensor data for the sensors in [PHONE_DATA_YIELD][SENSORS].")
|
||||||
|
else:
|
||||||
|
# Make sure the phone_data_yield file contains both "phone_data_yield_rapids_ratiovalidyieldedminutes" and "phone_data_yield_rapids_ratiovalidyieldedhours" columns
|
||||||
if ("phone_data_yield_rapids_ratiovalidyieldedminutes" not in phone_data_yield.columns) or ("phone_data_yield_rapids_ratiovalidyieldedhours" not in phone_data_yield.columns):
|
if ("phone_data_yield_rapids_ratiovalidyieldedminutes" not in phone_data_yield.columns) or ("phone_data_yield_rapids_ratiovalidyieldedhours" not in phone_data_yield.columns):
|
||||||
raise ValueError("Please make sure [PHONE_DATA_YIELD][RAPIDS][COMPUTE] is True AND [PHONE_DATA_YIELD][RAPIDS][FEATURES] contains [ratiovalidyieldedminutes, ratiovalidyieldedhours].")
|
raise ValueError("Please make sure [PHONE_DATA_YIELD][RAPIDS][COMPUTE] is True AND [PHONE_DATA_YIELD][RAPIDS][FEATURES] contains [ratiovalidyieldedminutes, ratiovalidyieldedhours].")
|
||||||
|
|
||||||
if not phone_data_yield.empty:
|
phone_data_yield[["phone_data_yield_rapids_ratiovalidyieldedminutes", "phone_data_yield_rapids_ratiovalidyieldedhours"]] = phone_data_yield[["phone_data_yield_rapids_ratiovalidyieldedminutes", "phone_data_yield_rapids_ratiovalidyieldedhours"]].round(3).clip(upper=1)
|
||||||
|
phone_data_yield["y_axis_label"] = phone_data_yield["pid"].apply(lambda pid: pid + "." + str(pid2label[pid]))
|
||||||
|
|
||||||
|
if time_segments_type == "EVENT":
|
||||||
|
html_file = getPhoneDataYieldHeatmap(phone_data_yield, time, "event", html_file)
|
||||||
|
else: # FREQUENCY or PERIODIC
|
||||||
for time_segment in time_segments:
|
for time_segment in time_segments:
|
||||||
|
|
||||||
phone_data_yield_per_segment = phone_data_yield[phone_data_yield["local_segment_label"] == time_segment]
|
phone_data_yield_per_segment = phone_data_yield[phone_data_yield["local_segment_label"] == time_segment]
|
||||||
|
|
||||||
if not phone_data_yield_per_segment.empty:
|
if not phone_data_yield_per_segment.empty:
|
||||||
|
|
||||||
if time == "RELATIVE_TIME":
|
html_file = getPhoneDataYieldHeatmap(phone_data_yield_per_segment, time, time_segment, html_file)
|
||||||
# set number of minutes after the first start date time of local segments as x_axis_label
|
|
||||||
phone_data_yield_per_segment.index = phone_data_yield_per_segment.index - phone_data_yield_per_segment.index.min()
|
|
||||||
elif time == "ABSOLUTE_TIME":
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
raise ValueError("[HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT][TIME] can only be RELATIVE_TIME or ABSOLUTE_TIME")
|
|
||||||
|
|
||||||
phone_data_yield_minutes_per_segment = phone_data_yield_per_segment[["phone_data_yield_rapids_ratiovalidyieldedminutes"]].rename(columns={"phone_data_yield_rapids_ratiovalidyieldedminutes": y_axis_label})
|
|
||||||
phone_data_yield_hours_per_segment = phone_data_yield_per_segment[["phone_data_yield_rapids_ratiovalidyieldedhours"]].rename(columns={"phone_data_yield_rapids_ratiovalidyieldedhours": y_axis_label})
|
|
||||||
|
|
||||||
if time_segment not in phone_data_yield_minutes.keys():
|
|
||||||
phone_data_yield_minutes[time_segment] = phone_data_yield_minutes_per_segment
|
|
||||||
phone_data_yield_hours[time_segment] = phone_data_yield_hours_per_segment
|
|
||||||
else:
|
|
||||||
phone_data_yield_minutes[time_segment] = pd.concat([phone_data_yield_minutes[time_segment], phone_data_yield_minutes_per_segment], axis=1, sort=True)
|
|
||||||
phone_data_yield_hours[time_segment] = pd.concat([phone_data_yield_hours[time_segment], phone_data_yield_hours_per_segment], axis=1, sort=True)
|
|
||||||
|
|
||||||
|
|
||||||
html_file = open(snakemake.output[0], "a", encoding="utf-8")
|
|
||||||
if len(phone_data_yield_minutes.keys()) == 0:
|
|
||||||
html_file.write("There is no sensor data for the sensors in [PHONE_DATA_YIELD][SENSORS].")
|
|
||||||
for time_segment in phone_data_yield_minutes.keys():
|
|
||||||
minutes_data_for_plot = phone_data_yield_minutes[time_segment].transpose().reindex(pd.Index(y_axis_labels)).round(3)
|
|
||||||
hours_data_for_plot = phone_data_yield_hours[time_segment].transpose().reindex(pd.Index(y_axis_labels)).round(3)
|
|
||||||
|
|
||||||
getPhoneDataYieldHeatmap(minutes_data_for_plot, y_axis_labels, time_segment, "minutes", time, html_file)
|
|
||||||
getPhoneDataYieldHeatmap(hours_data_for_plot, y_axis_labels, time_segment, "hours", time, html_file)
|
|
||||||
|
|
||||||
html_file.close()
|
html_file.close()
|
||||||
|
|
|
@ -0,0 +1,835 @@
|
||||||
|
"""
|
||||||
|
Source: https://github.com/plotly/plotly.py/pull/3136
|
||||||
|
=====
|
||||||
|
colors
|
||||||
|
=====
|
||||||
|
Functions that manipulate colors and arrays of colors.
|
||||||
|
-----
|
||||||
|
There are three basic types of color types: rgb, hex and tuple:
|
||||||
|
rgb - An rgb color is a string of the form 'rgb(a,b,c)' where a, b and c are
|
||||||
|
integers between 0 and 255 inclusive.
|
||||||
|
hex - A hex color is a string of the form '#xxxxxx' where each x is a
|
||||||
|
character that belongs to the set [0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f]. This is
|
||||||
|
just the set of characters used in the hexadecimal numeric system.
|
||||||
|
tuple - A tuple color is a 3-tuple of the form (a,b,c) where a, b and c are
|
||||||
|
floats between 0 and 1 inclusive.
|
||||||
|
-----
|
||||||
|
Colormaps and Colorscales:
|
||||||
|
A colormap or a colorscale is a correspondence between values - Pythonic
|
||||||
|
objects such as strings and floats - to colors.
|
||||||
|
There are typically two main types of colormaps that exist: numerical and
|
||||||
|
categorical colormaps.
|
||||||
|
Numerical:
|
||||||
|
----------
|
||||||
|
Numerical colormaps are used when the coloring column being used takes a
|
||||||
|
spectrum of values or numbers.
|
||||||
|
A classic example from the Plotly library:
|
||||||
|
```
|
||||||
|
rainbow_colorscale = [
|
||||||
|
[0, 'rgb(150,0,90)'], [0.125, 'rgb(0,0,200)'],
|
||||||
|
[0.25, 'rgb(0,25,255)'], [0.375, 'rgb(0,152,255)'],
|
||||||
|
[0.5, 'rgb(44,255,150)'], [0.625, 'rgb(151,255,0)'],
|
||||||
|
[0.75, 'rgb(255,234,0)'], [0.875, 'rgb(255,111,0)'],
|
||||||
|
[1, 'rgb(255,0,0)']
|
||||||
|
]
|
||||||
|
```
|
||||||
|
Notice that this colorscale is a list of lists with each inner list containing
|
||||||
|
a number and a color. These left hand numbers in the nested lists go from 0 to
|
||||||
|
1, and they are like pointers tell you when a number is mapped to a specific
|
||||||
|
color.
|
||||||
|
If you have a column of numbers `col_num` that you want to plot, and you know
|
||||||
|
```
|
||||||
|
min(col_num) = 0
|
||||||
|
max(col_num) = 100
|
||||||
|
```
|
||||||
|
then if you pull out the number `12.5` in the list and want to figure out what
|
||||||
|
color the corresponding chart element (bar, scatter plot, etc) is going to be,
|
||||||
|
you'll figure out that proportionally 12.5 to 100 is the same as 0.125 to 1.
|
||||||
|
So, the point will be mapped to 'rgb(0,0,200)'.
|
||||||
|
All other colors between the pinned values in a colorscale are linearly
|
||||||
|
interpolated.
|
||||||
|
Categorical:
|
||||||
|
------------
|
||||||
|
Alternatively, a categorical colormap is used to assign a specific value in a
|
||||||
|
color column to a specific color everytime it appears in the dataset.
|
||||||
|
A column of strings in a panadas.dataframe that is chosen to serve as the
|
||||||
|
color index would naturally use a categorical colormap. However, you can
|
||||||
|
choose to use a categorical colormap with a column of numbers.
|
||||||
|
Be careful! If you have a lot of unique numbers in your color column you will
|
||||||
|
end up with a colormap that is massive and may slow down graphing performance.
|
||||||
|
"""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
|
||||||
|
import decimal
|
||||||
|
from numbers import Number
|
||||||
|
import six
|
||||||
|
|
||||||
|
from _plotly_utils import exceptions
|
||||||
|
|
||||||
|
|
||||||
|
# Built-in qualitative color sequences and sequential,
|
||||||
|
# diverging and cyclical color scales.
|
||||||
|
|
||||||
|
DEFAULT_PLOTLY_COLORS = [
|
||||||
|
"rgb(31, 119, 180)",
|
||||||
|
"rgb(255, 127, 14)",
|
||||||
|
"rgb(44, 160, 44)",
|
||||||
|
"rgb(214, 39, 40)",
|
||||||
|
"rgb(148, 103, 189)",
|
||||||
|
"rgb(140, 86, 75)",
|
||||||
|
"rgb(227, 119, 194)",
|
||||||
|
"rgb(127, 127, 127)",
|
||||||
|
"rgb(188, 189, 34)",
|
||||||
|
"rgb(23, 190, 207)",
|
||||||
|
]
|
||||||
|
|
||||||
|
PLOTLY_SCALES = {
|
||||||
|
"Greys": [[0, "rgb(0,0,0)"], [1, "rgb(255,255,255)"]],
|
||||||
|
"YlGnBu": [
|
||||||
|
[0, "rgb(8,29,88)"],
|
||||||
|
[0.125, "rgb(37,52,148)"],
|
||||||
|
[0.25, "rgb(34,94,168)"],
|
||||||
|
[0.375, "rgb(29,145,192)"],
|
||||||
|
[0.5, "rgb(65,182,196)"],
|
||||||
|
[0.625, "rgb(127,205,187)"],
|
||||||
|
[0.75, "rgb(199,233,180)"],
|
||||||
|
[0.875, "rgb(237,248,217)"],
|
||||||
|
[1, "rgb(255,255,217)"],
|
||||||
|
],
|
||||||
|
"Greens": [
|
||||||
|
[0, "rgb(0,68,27)"],
|
||||||
|
[0.125, "rgb(0,109,44)"],
|
||||||
|
[0.25, "rgb(35,139,69)"],
|
||||||
|
[0.375, "rgb(65,171,93)"],
|
||||||
|
[0.5, "rgb(116,196,118)"],
|
||||||
|
[0.625, "rgb(161,217,155)"],
|
||||||
|
[0.75, "rgb(199,233,192)"],
|
||||||
|
[0.875, "rgb(229,245,224)"],
|
||||||
|
[1, "rgb(247,252,245)"],
|
||||||
|
],
|
||||||
|
"YlOrRd": [
|
||||||
|
[0, "rgb(128,0,38)"],
|
||||||
|
[0.125, "rgb(189,0,38)"],
|
||||||
|
[0.25, "rgb(227,26,28)"],
|
||||||
|
[0.375, "rgb(252,78,42)"],
|
||||||
|
[0.5, "rgb(253,141,60)"],
|
||||||
|
[0.625, "rgb(254,178,76)"],
|
||||||
|
[0.75, "rgb(254,217,118)"],
|
||||||
|
[0.875, "rgb(255,237,160)"],
|
||||||
|
[1, "rgb(255,255,204)"],
|
||||||
|
],
|
||||||
|
"Bluered": [[0, "rgb(0,0,255)"], [1, "rgb(255,0,0)"]],
|
||||||
|
# modified RdBu based on
|
||||||
|
# www.sandia.gov/~kmorel/documents/ColorMaps/ColorMapsExpanded.pdf
|
||||||
|
"RdBu": [
|
||||||
|
[0, "rgb(5,10,172)"],
|
||||||
|
[0.35, "rgb(106,137,247)"],
|
||||||
|
[0.5, "rgb(190,190,190)"],
|
||||||
|
[0.6, "rgb(220,170,132)"],
|
||||||
|
[0.7, "rgb(230,145,90)"],
|
||||||
|
[1, "rgb(178,10,28)"],
|
||||||
|
],
|
||||||
|
# Scale for non-negative numeric values
|
||||||
|
"Reds": [
|
||||||
|
[0, "rgb(220,220,220)"],
|
||||||
|
[0.2, "rgb(245,195,157)"],
|
||||||
|
[0.4, "rgb(245,160,105)"],
|
||||||
|
[1, "rgb(178,10,28)"],
|
||||||
|
],
|
||||||
|
# Scale for non-positive numeric values
|
||||||
|
"Blues": [
|
||||||
|
[0, "rgb(5,10,172)"],
|
||||||
|
[0.35, "rgb(40,60,190)"],
|
||||||
|
[0.5, "rgb(70,100,245)"],
|
||||||
|
[0.6, "rgb(90,120,245)"],
|
||||||
|
[0.7, "rgb(106,137,247)"],
|
||||||
|
[1, "rgb(220,220,220)"],
|
||||||
|
],
|
||||||
|
"Picnic": [
|
||||||
|
[0, "rgb(0,0,255)"],
|
||||||
|
[0.1, "rgb(51,153,255)"],
|
||||||
|
[0.2, "rgb(102,204,255)"],
|
||||||
|
[0.3, "rgb(153,204,255)"],
|
||||||
|
[0.4, "rgb(204,204,255)"],
|
||||||
|
[0.5, "rgb(255,255,255)"],
|
||||||
|
[0.6, "rgb(255,204,255)"],
|
||||||
|
[0.7, "rgb(255,153,255)"],
|
||||||
|
[0.8, "rgb(255,102,204)"],
|
||||||
|
[0.9, "rgb(255,102,102)"],
|
||||||
|
[1, "rgb(255,0,0)"],
|
||||||
|
],
|
||||||
|
"Rainbow": [
|
||||||
|
[0, "rgb(150,0,90)"],
|
||||||
|
[0.125, "rgb(0,0,200)"],
|
||||||
|
[0.25, "rgb(0,25,255)"],
|
||||||
|
[0.375, "rgb(0,152,255)"],
|
||||||
|
[0.5, "rgb(44,255,150)"],
|
||||||
|
[0.625, "rgb(151,255,0)"],
|
||||||
|
[0.75, "rgb(255,234,0)"],
|
||||||
|
[0.875, "rgb(255,111,0)"],
|
||||||
|
[1, "rgb(255,0,0)"],
|
||||||
|
],
|
||||||
|
"Portland": [
|
||||||
|
[0, "rgb(12,51,131)"],
|
||||||
|
[0.25, "rgb(10,136,186)"],
|
||||||
|
[0.5, "rgb(242,211,56)"],
|
||||||
|
[0.75, "rgb(242,143,56)"],
|
||||||
|
[1, "rgb(217,30,30)"],
|
||||||
|
],
|
||||||
|
"Jet": [
|
||||||
|
[0, "rgb(0,0,131)"],
|
||||||
|
[0.125, "rgb(0,60,170)"],
|
||||||
|
[0.375, "rgb(5,255,255)"],
|
||||||
|
[0.625, "rgb(255,255,0)"],
|
||||||
|
[0.875, "rgb(250,0,0)"],
|
||||||
|
[1, "rgb(128,0,0)"],
|
||||||
|
],
|
||||||
|
"Hot": [
|
||||||
|
[0, "rgb(0,0,0)"],
|
||||||
|
[0.3, "rgb(230,0,0)"],
|
||||||
|
[0.6, "rgb(255,210,0)"],
|
||||||
|
[1, "rgb(255,255,255)"],
|
||||||
|
],
|
||||||
|
"Blackbody": [
|
||||||
|
[0, "rgb(0,0,0)"],
|
||||||
|
[0.2, "rgb(230,0,0)"],
|
||||||
|
[0.4, "rgb(230,210,0)"],
|
||||||
|
[0.7, "rgb(255,255,255)"],
|
||||||
|
[1, "rgb(160,200,255)"],
|
||||||
|
],
|
||||||
|
"Earth": [
|
||||||
|
[0, "rgb(0,0,130)"],
|
||||||
|
[0.1, "rgb(0,180,180)"],
|
||||||
|
[0.2, "rgb(40,210,40)"],
|
||||||
|
[0.4, "rgb(230,230,50)"],
|
||||||
|
[0.6, "rgb(120,70,20)"],
|
||||||
|
[1, "rgb(255,255,255)"],
|
||||||
|
],
|
||||||
|
"Electric": [
|
||||||
|
[0, "rgb(0,0,0)"],
|
||||||
|
[0.15, "rgb(30,0,100)"],
|
||||||
|
[0.4, "rgb(120,0,100)"],
|
||||||
|
[0.6, "rgb(160,90,0)"],
|
||||||
|
[0.8, "rgb(230,200,0)"],
|
||||||
|
[1, "rgb(255,250,220)"],
|
||||||
|
],
|
||||||
|
"Viridis": [
|
||||||
|
[0, "#440154"],
|
||||||
|
[0.06274509803921569, "#48186a"],
|
||||||
|
[0.12549019607843137, "#472d7b"],
|
||||||
|
[0.18823529411764706, "#424086"],
|
||||||
|
[0.25098039215686274, "#3b528b"],
|
||||||
|
[0.3137254901960784, "#33638d"],
|
||||||
|
[0.3764705882352941, "#2c728e"],
|
||||||
|
[0.4392156862745098, "#26828e"],
|
||||||
|
[0.5019607843137255, "#21918c"],
|
||||||
|
[0.5647058823529412, "#1fa088"],
|
||||||
|
[0.6274509803921569, "#28ae80"],
|
||||||
|
[0.6901960784313725, "#3fbc73"],
|
||||||
|
[0.7529411764705882, "#5ec962"],
|
||||||
|
[0.8156862745098039, "#84d44b"],
|
||||||
|
[0.8784313725490196, "#addc30"],
|
||||||
|
[0.9411764705882353, "#d8e219"],
|
||||||
|
[1, "#fde725"],
|
||||||
|
],
|
||||||
|
"Cividis": [
|
||||||
|
[0.000000, "rgb(0,32,76)"],
|
||||||
|
[0.058824, "rgb(0,42,102)"],
|
||||||
|
[0.117647, "rgb(0,52,110)"],
|
||||||
|
[0.176471, "rgb(39,63,108)"],
|
||||||
|
[0.235294, "rgb(60,74,107)"],
|
||||||
|
[0.294118, "rgb(76,85,107)"],
|
||||||
|
[0.352941, "rgb(91,95,109)"],
|
||||||
|
[0.411765, "rgb(104,106,112)"],
|
||||||
|
[0.470588, "rgb(117,117,117)"],
|
||||||
|
[0.529412, "rgb(131,129,120)"],
|
||||||
|
[0.588235, "rgb(146,140,120)"],
|
||||||
|
[0.647059, "rgb(161,152,118)"],
|
||||||
|
[0.705882, "rgb(176,165,114)"],
|
||||||
|
[0.764706, "rgb(192,177,109)"],
|
||||||
|
[0.823529, "rgb(209,191,102)"],
|
||||||
|
[0.882353, "rgb(225,204,92)"],
|
||||||
|
[0.941176, "rgb(243,219,79)"],
|
||||||
|
[1.000000, "rgb(255,233,69)"],
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def color_parser(colors, function):
|
||||||
|
"""
|
||||||
|
Takes color(s) and a function and applies the function on the color(s)
|
||||||
|
In particular, this function identifies whether the given color object
|
||||||
|
is an iterable or not and applies the given color-parsing function to
|
||||||
|
the color or iterable of colors. If given an iterable, it will only be
|
||||||
|
able to work with it if all items in the iterable are of the same type
|
||||||
|
- rgb string, hex string or tuple
|
||||||
|
"""
|
||||||
|
if isinstance(colors, str):
|
||||||
|
return function(colors)
|
||||||
|
|
||||||
|
if isinstance(colors, tuple) and isinstance(colors[0], Number):
|
||||||
|
return function(colors)
|
||||||
|
|
||||||
|
if hasattr(colors, "__iter__"):
|
||||||
|
if isinstance(colors, tuple):
|
||||||
|
new_color_tuple = tuple(function(item) for item in colors)
|
||||||
|
return new_color_tuple
|
||||||
|
|
||||||
|
else:
|
||||||
|
new_color_list = [function(item) for item in colors]
|
||||||
|
return new_color_list
|
||||||
|
|
||||||
|
|
||||||
|
def validate_colors(colors, colortype="tuple"):
|
||||||
|
"""
|
||||||
|
Validates color(s) and returns a list of color(s) of a specified type
|
||||||
|
"""
|
||||||
|
from numbers import Number
|
||||||
|
|
||||||
|
if colors is None:
|
||||||
|
colors = DEFAULT_PLOTLY_COLORS
|
||||||
|
|
||||||
|
if isinstance(colors, str):
|
||||||
|
if colors in PLOTLY_SCALES:
|
||||||
|
colors_list = colorscale_to_colors(PLOTLY_SCALES[colors])
|
||||||
|
# TODO: fix _gantt.py/_scatter.py so that they can accept the
|
||||||
|
# actual colorscale and not just a list of the first and last
|
||||||
|
# color in the plotly colorscale. In resolving this issue we
|
||||||
|
# will be removing the immediate line below
|
||||||
|
colors = [colors_list[0]] + [colors_list[-1]]
|
||||||
|
elif "rgb" in colors or "#" in colors:
|
||||||
|
colors = [colors]
|
||||||
|
else:
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"If your colors variable is a string, it must be a "
|
||||||
|
"Plotly scale, an rgb color or a hex color."
|
||||||
|
)
|
||||||
|
|
||||||
|
elif isinstance(colors, tuple):
|
||||||
|
if isinstance(colors[0], Number):
|
||||||
|
colors = [colors]
|
||||||
|
else:
|
||||||
|
colors = list(colors)
|
||||||
|
|
||||||
|
# convert color elements in list to tuple color
|
||||||
|
for j, each_color in enumerate(colors):
|
||||||
|
if "rgb" in each_color:
|
||||||
|
each_color = color_parser(each_color, unlabel_rgb)
|
||||||
|
for value in each_color:
|
||||||
|
if value > 255.0:
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"Whoops! The elements in your rgb colors "
|
||||||
|
"tuples cannot exceed 255.0."
|
||||||
|
)
|
||||||
|
each_color = color_parser(each_color, unconvert_from_RGB_255)
|
||||||
|
colors[j] = each_color
|
||||||
|
|
||||||
|
if "#" in each_color:
|
||||||
|
each_color = color_parser(each_color, hex_to_rgb)
|
||||||
|
each_color = color_parser(each_color, unconvert_from_RGB_255)
|
||||||
|
|
||||||
|
colors[j] = each_color
|
||||||
|
|
||||||
|
if isinstance(each_color, tuple):
|
||||||
|
for value in each_color:
|
||||||
|
if value > 1.0:
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"Whoops! The elements in your colors tuples "
|
||||||
|
"cannot exceed 1.0."
|
||||||
|
)
|
||||||
|
colors[j] = each_color
|
||||||
|
|
||||||
|
if colortype == "rgb" and not isinstance(colors, six.string_types):
|
||||||
|
for j, each_color in enumerate(colors):
|
||||||
|
rgb_color = color_parser(each_color, convert_to_RGB_255)
|
||||||
|
colors[j] = color_parser(rgb_color, label_rgb)
|
||||||
|
|
||||||
|
return colors
|
||||||
|
|
||||||
|
|
||||||
|
def validate_colors_dict(colors, colortype="tuple"):
|
||||||
|
"""
|
||||||
|
Validates dictionary of color(s)
|
||||||
|
"""
|
||||||
|
# validate each color element in the dictionary
|
||||||
|
for key in colors:
|
||||||
|
if "rgb" in colors[key]:
|
||||||
|
colors[key] = color_parser(colors[key], unlabel_rgb)
|
||||||
|
for value in colors[key]:
|
||||||
|
if value > 255.0:
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"Whoops! The elements in your rgb colors "
|
||||||
|
"tuples cannot exceed 255.0."
|
||||||
|
)
|
||||||
|
colors[key] = color_parser(colors[key], unconvert_from_RGB_255)
|
||||||
|
|
||||||
|
if "#" in colors[key]:
|
||||||
|
colors[key] = color_parser(colors[key], hex_to_rgb)
|
||||||
|
colors[key] = color_parser(colors[key], unconvert_from_RGB_255)
|
||||||
|
|
||||||
|
if isinstance(colors[key], tuple):
|
||||||
|
for value in colors[key]:
|
||||||
|
if value > 1.0:
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"Whoops! The elements in your colors tuples "
|
||||||
|
"cannot exceed 1.0."
|
||||||
|
)
|
||||||
|
|
||||||
|
if colortype == "rgb":
|
||||||
|
for key in colors:
|
||||||
|
colors[key] = color_parser(colors[key], convert_to_RGB_255)
|
||||||
|
colors[key] = color_parser(colors[key], label_rgb)
|
||||||
|
|
||||||
|
return colors
|
||||||
|
|
||||||
|
|
||||||
|
def convert_colors_to_same_type(
|
||||||
|
colors,
|
||||||
|
colortype="rgb",
|
||||||
|
scale=None,
|
||||||
|
return_default_colors=False,
|
||||||
|
num_of_defualt_colors=2,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Converts color(s) to the specified color type
|
||||||
|
Takes a single color or an iterable of colors, as well as a list of scale
|
||||||
|
values, and outputs a 2-pair of the list of color(s) converted all to an
|
||||||
|
rgb or tuple color type, aswell as the scale as the second element. If
|
||||||
|
colors is a Plotly Scale name, then 'scale' will be forced to the scale
|
||||||
|
from the respective colorscale and the colors in that colorscale will also
|
||||||
|
be coverted to the selected colortype. If colors is None, then there is an
|
||||||
|
option to return portion of the DEFAULT_PLOTLY_COLORS
|
||||||
|
:param (str|tuple|list) colors: either a plotly scale name, an rgb or hex
|
||||||
|
color, a color tuple or a list/tuple of colors
|
||||||
|
:param (list) scale: see docs for validate_scale_values()
|
||||||
|
:rtype (tuple) (colors_list, scale) if scale is None in the function call,
|
||||||
|
then scale will remain None in the returned tuple
|
||||||
|
"""
|
||||||
|
colors_list = []
|
||||||
|
|
||||||
|
if colors is None and return_default_colors is True:
|
||||||
|
colors_list = DEFAULT_PLOTLY_COLORS[0:num_of_defualt_colors]
|
||||||
|
|
||||||
|
if isinstance(colors, str):
|
||||||
|
if colors in PLOTLY_SCALES:
|
||||||
|
colors_list = colorscale_to_colors(PLOTLY_SCALES[colors])
|
||||||
|
if scale is None:
|
||||||
|
scale = colorscale_to_scale(PLOTLY_SCALES[colors])
|
||||||
|
|
||||||
|
elif "rgb" in colors or "#" in colors:
|
||||||
|
colors_list = [colors]
|
||||||
|
|
||||||
|
elif isinstance(colors, tuple):
|
||||||
|
if isinstance(colors[0], Number):
|
||||||
|
colors_list = [colors]
|
||||||
|
else:
|
||||||
|
colors_list = list(colors)
|
||||||
|
|
||||||
|
elif isinstance(colors, list):
|
||||||
|
colors_list = colors
|
||||||
|
|
||||||
|
# validate scale
|
||||||
|
if scale is not None:
|
||||||
|
validate_scale_values(scale)
|
||||||
|
|
||||||
|
if len(colors_list) != len(scale):
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"Make sure that the length of your scale matches the length "
|
||||||
|
"of your list of colors which is {}.".format(len(colors_list))
|
||||||
|
)
|
||||||
|
|
||||||
|
# convert all colors to rgb
|
||||||
|
for j, each_color in enumerate(colors_list):
|
||||||
|
if "#" in each_color:
|
||||||
|
each_color = color_parser(each_color, hex_to_rgb)
|
||||||
|
each_color = color_parser(each_color, label_rgb)
|
||||||
|
colors_list[j] = each_color
|
||||||
|
|
||||||
|
elif isinstance(each_color, tuple):
|
||||||
|
each_color = color_parser(each_color, convert_to_RGB_255)
|
||||||
|
each_color = color_parser(each_color, label_rgb)
|
||||||
|
colors_list[j] = each_color
|
||||||
|
|
||||||
|
if colortype == "rgb":
|
||||||
|
return (colors_list, scale)
|
||||||
|
elif colortype == "tuple":
|
||||||
|
for j, each_color in enumerate(colors_list):
|
||||||
|
each_color = color_parser(each_color, unlabel_rgb)
|
||||||
|
each_color = color_parser(each_color, unconvert_from_RGB_255)
|
||||||
|
colors_list[j] = each_color
|
||||||
|
return (colors_list, scale)
|
||||||
|
else:
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"You must select either rgb or tuple for your colortype variable."
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_dict_colors_to_same_type(colors_dict, colortype="rgb"):
|
||||||
|
"""
|
||||||
|
Converts a colors in a dictionary of colors to the specified color type
|
||||||
|
:param (dict) colors_dict: a dictionary whose values are single colors
|
||||||
|
"""
|
||||||
|
for key in colors_dict:
|
||||||
|
if "#" in colors_dict[key]:
|
||||||
|
colors_dict[key] = color_parser(colors_dict[key], hex_to_rgb)
|
||||||
|
colors_dict[key] = color_parser(colors_dict[key], label_rgb)
|
||||||
|
|
||||||
|
elif isinstance(colors_dict[key], tuple):
|
||||||
|
colors_dict[key] = color_parser(colors_dict[key], convert_to_RGB_255)
|
||||||
|
colors_dict[key] = color_parser(colors_dict[key], label_rgb)
|
||||||
|
|
||||||
|
if colortype == "rgb":
|
||||||
|
return colors_dict
|
||||||
|
elif colortype == "tuple":
|
||||||
|
for key in colors_dict:
|
||||||
|
colors_dict[key] = color_parser(colors_dict[key], unlabel_rgb)
|
||||||
|
colors_dict[key] = color_parser(colors_dict[key], unconvert_from_RGB_255)
|
||||||
|
return colors_dict
|
||||||
|
else:
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"You must select either rgb or tuple for your colortype variable."
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def validate_scale_values(scale):
|
||||||
|
"""
|
||||||
|
Validates scale values from a colorscale
|
||||||
|
:param (list) scale: a strictly increasing list of floats that begins
|
||||||
|
with 0 and ends with 1. Its usage derives from a colorscale which is
|
||||||
|
a list of two-lists (a list with two elements) of the form
|
||||||
|
[value, color] which are used to determine how interpolation weighting
|
||||||
|
works between the colors in the colorscale. Therefore scale is just
|
||||||
|
the extraction of these values from the two-lists in order
|
||||||
|
"""
|
||||||
|
if len(scale) < 2:
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"You must input a list of scale values that has at least two values."
|
||||||
|
)
|
||||||
|
|
||||||
|
if (scale[0] != 0) or (scale[-1] != 1):
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"The first and last number in your scale must be 0.0 and 1.0 "
|
||||||
|
"respectively."
|
||||||
|
)
|
||||||
|
|
||||||
|
if not all(x < y for x, y in zip(scale, scale[1:])):
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"'scale' must be a list that contains a strictly increasing "
|
||||||
|
"sequence of numbers."
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def validate_colorscale(colorscale):
|
||||||
|
"""Validate the structure, scale values and colors of colorscale."""
|
||||||
|
if not isinstance(colorscale, list):
|
||||||
|
# TODO Write tests for these exceptions
|
||||||
|
raise exceptions.PlotlyError("A valid colorscale must be a list.")
|
||||||
|
if not all(isinstance(innerlist, list) for innerlist in colorscale):
|
||||||
|
raise exceptions.PlotlyError("A valid colorscale must be a list of lists.")
|
||||||
|
colorscale_colors = colorscale_to_colors(colorscale)
|
||||||
|
scale_values = colorscale_to_scale(colorscale)
|
||||||
|
|
||||||
|
validate_scale_values(scale_values)
|
||||||
|
validate_colors(colorscale_colors)
|
||||||
|
|
||||||
|
|
||||||
|
def make_colorscale(colors, scale=None):
|
||||||
|
"""
|
||||||
|
Makes a colorscale from a list of colors and a scale
|
||||||
|
Takes a list of colors and scales and constructs a colorscale based
|
||||||
|
on the colors in sequential order. If 'scale' is left empty, a linear-
|
||||||
|
interpolated colorscale will be generated. If 'scale' is a specificed
|
||||||
|
list, it must be the same legnth as colors and must contain all floats
|
||||||
|
For documentation regarding to the form of the output, see
|
||||||
|
https://plot.ly/python/reference/#mesh3d-colorscale
|
||||||
|
:param (list) colors: a list of single colors
|
||||||
|
"""
|
||||||
|
colorscale = []
|
||||||
|
|
||||||
|
# validate minimum colors length of 2
|
||||||
|
if len(colors) < 2:
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"You must input a list of colors that has at least two colors."
|
||||||
|
)
|
||||||
|
|
||||||
|
if scale is None:
|
||||||
|
scale_incr = 1.0 / (len(colors) - 1)
|
||||||
|
return [[i * scale_incr, color] for i, color in enumerate(colors)]
|
||||||
|
|
||||||
|
else:
|
||||||
|
if len(colors) != len(scale):
|
||||||
|
raise exceptions.PlotlyError(
|
||||||
|
"The length of colors and scale must be the same."
|
||||||
|
)
|
||||||
|
|
||||||
|
validate_scale_values(scale)
|
||||||
|
|
||||||
|
colorscale = [list(tup) for tup in zip(scale, colors)]
|
||||||
|
return colorscale
|
||||||
|
|
||||||
|
|
||||||
|
def find_intermediate_color(lowcolor, highcolor, intermed, colortype="tuple"):
|
||||||
|
"""
|
||||||
|
Returns the color at a given distance between two colors
|
||||||
|
This function takes two color tuples, where each element is between 0
|
||||||
|
and 1, along with a value 0 < intermed < 1 and returns a color that is
|
||||||
|
intermed-percent from lowcolor to highcolor. If colortype is set to 'rgb',
|
||||||
|
the function will automatically convert the rgb type to a tuple, find the
|
||||||
|
intermediate color and return it as an rgb color.
|
||||||
|
"""
|
||||||
|
if colortype == "rgb":
|
||||||
|
# convert to tuple color, eg. (1, 0.45, 0.7)
|
||||||
|
lowcolor = unlabel_rgb(lowcolor)
|
||||||
|
highcolor = unlabel_rgb(highcolor)
|
||||||
|
|
||||||
|
diff_0 = float(highcolor[0] - lowcolor[0])
|
||||||
|
diff_1 = float(highcolor[1] - lowcolor[1])
|
||||||
|
diff_2 = float(highcolor[2] - lowcolor[2])
|
||||||
|
|
||||||
|
inter_med_tuple = (
|
||||||
|
lowcolor[0] + intermed * diff_0,
|
||||||
|
lowcolor[1] + intermed * diff_1,
|
||||||
|
lowcolor[2] + intermed * diff_2,
|
||||||
|
)
|
||||||
|
|
||||||
|
if colortype == "rgb":
|
||||||
|
# back to an rgb string, e.g. rgb(30, 20, 10)
|
||||||
|
inter_med_rgb = label_rgb(inter_med_tuple)
|
||||||
|
return inter_med_rgb
|
||||||
|
|
||||||
|
return inter_med_tuple
|
||||||
|
|
||||||
|
|
||||||
|
def unconvert_from_RGB_255(colors):
|
||||||
|
"""
|
||||||
|
Return a tuple where each element gets divided by 255
|
||||||
|
Takes a (list of) color tuple(s) where each element is between 0 and
|
||||||
|
255. Returns the same tuples where each tuple element is normalized to
|
||||||
|
a value between 0 and 1
|
||||||
|
"""
|
||||||
|
return (colors[0] / (255.0), colors[1] / (255.0), colors[2] / (255.0))
|
||||||
|
|
||||||
|
|
||||||
|
def convert_to_RGB_255(colors):
|
||||||
|
"""
|
||||||
|
Multiplies each element of a triplet by 255
|
||||||
|
Each coordinate of the color tuple is rounded to the nearest float and
|
||||||
|
then is turned into an integer. If a number is of the form x.5, then
|
||||||
|
if x is odd, the number rounds up to (x+1). Otherwise, it rounds down
|
||||||
|
to just x. This is the way rounding works in Python 3 and in current
|
||||||
|
statistical analysis to avoid rounding bias
|
||||||
|
:param (list) rgb_components: grabs the three R, G and B values to be
|
||||||
|
returned as computed in the function
|
||||||
|
"""
|
||||||
|
rgb_components = []
|
||||||
|
|
||||||
|
for component in colors:
|
||||||
|
rounded_num = decimal.Decimal(str(component * 255.0)).quantize(
|
||||||
|
decimal.Decimal("1"), rounding=decimal.ROUND_HALF_EVEN
|
||||||
|
)
|
||||||
|
# convert rounded number to an integer from 'Decimal' form
|
||||||
|
rounded_num = int(rounded_num)
|
||||||
|
rgb_components.append(rounded_num)
|
||||||
|
|
||||||
|
return (rgb_components[0], rgb_components[1], rgb_components[2])
|
||||||
|
|
||||||
|
|
||||||
|
def n_colors(lowcolor, highcolor, n_colors, colortype="tuple"):
|
||||||
|
"""
|
||||||
|
Splits a low and high color into a list of n_colors colors in it
|
||||||
|
Accepts two color tuples and returns a list of n_colors colors
|
||||||
|
which form the intermediate colors between lowcolor and highcolor
|
||||||
|
from linearly interpolating through RGB space. If colortype is 'rgb'
|
||||||
|
the function will return a list of colors in the same form.
|
||||||
|
"""
|
||||||
|
if colortype == "rgb":
|
||||||
|
# convert to tuple
|
||||||
|
lowcolor = unlabel_rgb(lowcolor)
|
||||||
|
highcolor = unlabel_rgb(highcolor)
|
||||||
|
|
||||||
|
diff_0 = float(highcolor[0] - lowcolor[0])
|
||||||
|
incr_0 = diff_0 / (n_colors - 1)
|
||||||
|
diff_1 = float(highcolor[1] - lowcolor[1])
|
||||||
|
incr_1 = diff_1 / (n_colors - 1)
|
||||||
|
diff_2 = float(highcolor[2] - lowcolor[2])
|
||||||
|
incr_2 = diff_2 / (n_colors - 1)
|
||||||
|
list_of_colors = []
|
||||||
|
|
||||||
|
for index in range(n_colors):
|
||||||
|
new_tuple = (
|
||||||
|
lowcolor[0] + (index * incr_0),
|
||||||
|
lowcolor[1] + (index * incr_1),
|
||||||
|
lowcolor[2] + (index * incr_2),
|
||||||
|
)
|
||||||
|
list_of_colors.append(new_tuple)
|
||||||
|
|
||||||
|
if colortype == "rgb":
|
||||||
|
# back to an rgb string
|
||||||
|
list_of_colors = color_parser(list_of_colors, label_rgb)
|
||||||
|
|
||||||
|
return list_of_colors
|
||||||
|
|
||||||
|
|
||||||
|
def label_rgb(colors):
|
||||||
|
"""
|
||||||
|
Takes tuple (a, b, c) and returns an rgb color 'rgb(a, b, c)'
|
||||||
|
"""
|
||||||
|
return "rgb(%s, %s, %s)" % (colors[0], colors[1], colors[2])
|
||||||
|
|
||||||
|
|
||||||
|
def unlabel_rgb(colors):
|
||||||
|
"""
|
||||||
|
Takes rgb color(s) 'rgb(a, b, c)' and returns tuple(s) (a, b, c)
|
||||||
|
This function takes either an 'rgb(a, b, c)' color or a list of
|
||||||
|
such colors and returns the color tuples in tuple(s) (a, b, c)
|
||||||
|
"""
|
||||||
|
str_vals = ""
|
||||||
|
for index in range(len(colors)):
|
||||||
|
try:
|
||||||
|
float(colors[index])
|
||||||
|
str_vals = str_vals + colors[index]
|
||||||
|
except ValueError:
|
||||||
|
if colors[index] == "," or colors[index] == ".":
|
||||||
|
str_vals = str_vals + colors[index]
|
||||||
|
|
||||||
|
str_vals = str_vals + ","
|
||||||
|
numbers = []
|
||||||
|
str_num = ""
|
||||||
|
for char in str_vals:
|
||||||
|
if char != ",":
|
||||||
|
str_num = str_num + char
|
||||||
|
else:
|
||||||
|
numbers.append(float(str_num))
|
||||||
|
str_num = ""
|
||||||
|
return (numbers[0], numbers[1], numbers[2])
|
||||||
|
|
||||||
|
|
||||||
|
def hex_to_rgb(value):
|
||||||
|
"""
|
||||||
|
Calculates rgb values from a hex color code.
|
||||||
|
:param (string) value: Hex color string
|
||||||
|
:rtype (tuple) (r_value, g_value, b_value): tuple of rgb values
|
||||||
|
"""
|
||||||
|
value = value.lstrip("#")
|
||||||
|
hex_total_length = len(value)
|
||||||
|
rgb_section_length = hex_total_length // 3
|
||||||
|
return tuple(
|
||||||
|
int(value[i : i + rgb_section_length], 16)
|
||||||
|
for i in range(0, hex_total_length, rgb_section_length)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def colorscale_to_colors(colorscale):
|
||||||
|
"""
|
||||||
|
Extracts the colors from colorscale as a list
|
||||||
|
"""
|
||||||
|
color_list = []
|
||||||
|
for item in colorscale:
|
||||||
|
color_list.append(item[1])
|
||||||
|
return color_list
|
||||||
|
|
||||||
|
|
||||||
|
def colorscale_to_scale(colorscale):
|
||||||
|
"""
|
||||||
|
Extracts the interpolation scale values from colorscale as a list
|
||||||
|
"""
|
||||||
|
scale_list = []
|
||||||
|
for item in colorscale:
|
||||||
|
scale_list.append(item[0])
|
||||||
|
return scale_list
|
||||||
|
|
||||||
|
|
||||||
|
def convert_colorscale_to_rgb(colorscale):
|
||||||
|
"""
|
||||||
|
Converts the colors in a colorscale to rgb colors
|
||||||
|
A colorscale is an array of arrays, each with a numeric value as the
|
||||||
|
first item and a color as the second. This function specifically is
|
||||||
|
converting a colorscale with tuple colors (each coordinate between 0
|
||||||
|
and 1) into a colorscale with the colors transformed into rgb colors
|
||||||
|
"""
|
||||||
|
for color in colorscale:
|
||||||
|
color[1] = convert_to_RGB_255(color[1])
|
||||||
|
|
||||||
|
for color in colorscale:
|
||||||
|
color[1] = label_rgb(color[1])
|
||||||
|
return colorscale
|
||||||
|
|
||||||
|
|
||||||
|
def named_colorscales():
|
||||||
|
"""
|
||||||
|
Returns lowercased names of built-in continuous colorscales.
|
||||||
|
"""
|
||||||
|
from _plotly_utils.basevalidators import ColorscaleValidator
|
||||||
|
|
||||||
|
return [c for c in ColorscaleValidator("", "").named_colorscales]
|
||||||
|
|
||||||
|
|
||||||
|
def get_colorscale(name):
|
||||||
|
"""
|
||||||
|
Returns the colorscale for a given name. See `named_colorscales` for the
|
||||||
|
built-in colorscales.
|
||||||
|
"""
|
||||||
|
from _plotly_utils.basevalidators import ColorscaleValidator
|
||||||
|
|
||||||
|
if not isinstance(name, str):
|
||||||
|
raise exceptions.PlotlyError("Name argument have to be a string.")
|
||||||
|
|
||||||
|
name = name.lower()
|
||||||
|
if name[-2:] == "_r":
|
||||||
|
should_reverse = True
|
||||||
|
name = name[:-2]
|
||||||
|
else:
|
||||||
|
should_reverse = False
|
||||||
|
|
||||||
|
if name in ColorscaleValidator("", "").named_colorscales:
|
||||||
|
colorscale = ColorscaleValidator("", "").named_colorscales[name]
|
||||||
|
else:
|
||||||
|
raise exceptions.PlotlyError(f"Colorscale {name} is not a built-in scale.")
|
||||||
|
|
||||||
|
if should_reverse:
|
||||||
|
colorscale = colorscale[::-1]
|
||||||
|
return make_colorscale(colorscale)
|
||||||
|
|
||||||
|
|
||||||
|
def sample_colorscale(colorscale, samplepoints, low=0.0, high=1.0, colortype="rgb"):
|
||||||
|
"""
|
||||||
|
Samples a colorscale at specific points.
|
||||||
|
Interpolates between colors in a colorscale to find the specific colors
|
||||||
|
corresponding to the specified sample values. The colorscale can be specified
|
||||||
|
as a list of `[scale, color]` pairs, as a list of colors, or as a named
|
||||||
|
plotly colorscale. The samplepoints can be specefied as an iterable of specific
|
||||||
|
points in the range [0.0, 1.0], or as an integer number of points which will
|
||||||
|
be spaced equally between the low value (default 0.0) and the high value
|
||||||
|
(default 1.0). The output is a list of colors, formatted according to the
|
||||||
|
specified colortype.
|
||||||
|
"""
|
||||||
|
from bisect import bisect_left
|
||||||
|
|
||||||
|
try:
|
||||||
|
validate_colorscale(colorscale)
|
||||||
|
except exceptions.PlotlyError:
|
||||||
|
if isinstance(colorscale, str):
|
||||||
|
colorscale = get_colorscale(colorscale)
|
||||||
|
else:
|
||||||
|
colorscale = make_colorscale(colorscale)
|
||||||
|
|
||||||
|
scale = colorscale_to_scale(colorscale)
|
||||||
|
validate_scale_values(scale)
|
||||||
|
colors = colorscale_to_colors(colorscale)
|
||||||
|
colors = validate_colors(colors, colortype="tuple")
|
||||||
|
|
||||||
|
if isinstance(samplepoints, int):
|
||||||
|
samplepoints = [
|
||||||
|
low + idx / (samplepoints - 1) * (high - low) for idx in range(samplepoints)
|
||||||
|
]
|
||||||
|
elif isinstance(samplepoints, float):
|
||||||
|
samplepoints = [samplepoints]
|
||||||
|
|
||||||
|
sampled_colors = []
|
||||||
|
for point in samplepoints:
|
||||||
|
high = bisect_left(scale, point)
|
||||||
|
low = high - 1
|
||||||
|
interpolant = (point - scale[low]) / (scale[high] - scale[low])
|
||||||
|
sampled_color = find_intermediate_color(colors[low], colors[high], interpolant)
|
||||||
|
sampled_colors.append(sampled_color)
|
||||||
|
return validate_colors(sampled_colors, colortype=colortype)
|
|
@ -1187,10 +1187,13 @@ properties:
|
||||||
|
|
||||||
HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT:
|
HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT:
|
||||||
type: object
|
type: object
|
||||||
required: [PLOT]
|
required: [PLOT, TIME]
|
||||||
properties:
|
properties:
|
||||||
PLOT:
|
PLOT:
|
||||||
type: boolean
|
type: boolean
|
||||||
|
TIME:
|
||||||
|
type: string
|
||||||
|
enum: [ABSOLUTE_TIME, RELATIVE_TIME]
|
||||||
|
|
||||||
HEATMAP_SENSORS_PER_MINUTE_PER_TIME_SEGMENT:
|
HEATMAP_SENSORS_PER_MINUTE_PER_TIME_SEGMENT:
|
||||||
type: object
|
type: object
|
||||||
|
|
Loading…
Reference in New Issue