Disable discarding rows if DATA_YIELD_RATIO_THRESHOLD==0.
parent
607da820f2
commit
4cfe5a3a98
16
config.yaml
16
config.yaml
|
@ -3,7 +3,7 @@
|
||||||
########################################################################################################################
|
########################################################################################################################
|
||||||
|
|
||||||
# See https://www.rapids.science/latest/setup/configuration/#participant-files
|
# See https://www.rapids.science/latest/setup/configuration/#participant-files
|
||||||
PIDS: ['p031', 'p032', 'p033', 'p034', 'p035', 'p036', 'p037', 'p038', 'p039', 'p040', 'p042', 'p043', 'p044', 'p045', 'p046', 'p049', 'p050', 'p052', 'p053', 'p054', 'p055', 'p057', 'p058', 'p059', 'p060', 'p061', 'p062', 'p064', 'p067', 'p068', 'p069', 'p070', 'p071', 'p072', 'p073', 'p074', 'p075', 'p076', 'p077', 'p078', 'p079', 'p080', 'p081', 'p082', 'p083', 'p084', 'p085', 'p086', 'p088', 'p089', 'p090', 'p091', 'p092', 'p093', 'p106', 'p107']
|
PIDS: ['p01']
|
||||||
|
|
||||||
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
|
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
|
||||||
CREATE_PARTICIPANT_FILES:
|
CREATE_PARTICIPANT_FILES:
|
||||||
|
@ -685,14 +685,14 @@ ALL_CLEANING_INDIVIDUAL:
|
||||||
CORR_THRESHOLD: 0.95
|
CORR_THRESHOLD: 0.95
|
||||||
SRC_SCRIPT: src/features/all_cleaning_individual/rapids/main.R
|
SRC_SCRIPT: src/features/all_cleaning_individual/rapids/main.R
|
||||||
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type
|
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type
|
||||||
COMPUTE: False
|
COMPUTE: True
|
||||||
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
|
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
|
||||||
COMPUTE: False
|
COMPUTE: False
|
||||||
TYPE: median # options: zero, mean, median or k-nearest
|
TYPE: median # options: zero, mean, median or k-nearest
|
||||||
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
||||||
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
|
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
|
||||||
COLS_VAR_THRESHOLD: True
|
COLS_VAR_THRESHOLD: True
|
||||||
ROWS_NAN_THRESHOLD: 0 # set to 1 to disable
|
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
|
||||||
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
||||||
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
||||||
DROP_HIGHLY_CORRELATED_FEATURES:
|
DROP_HIGHLY_CORRELATED_FEATURES:
|
||||||
|
@ -705,7 +705,7 @@ ALL_CLEANING_OVERALL:
|
||||||
CLEAN_STANDARDIZED: True
|
CLEAN_STANDARDIZED: True
|
||||||
PROVIDERS:
|
PROVIDERS:
|
||||||
RAPIDS:
|
RAPIDS:
|
||||||
COMPUTE: False
|
COMPUTE: True
|
||||||
IMPUTE_SELECTED_EVENT_FEATURES:
|
IMPUTE_SELECTED_EVENT_FEATURES:
|
||||||
COMPUTE: False
|
COMPUTE: False
|
||||||
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
||||||
|
@ -720,14 +720,14 @@ ALL_CLEANING_OVERALL:
|
||||||
CORR_THRESHOLD: 0.95
|
CORR_THRESHOLD: 0.95
|
||||||
SRC_SCRIPT: src/features/all_cleaning_overall/rapids/main.R
|
SRC_SCRIPT: src/features/all_cleaning_overall/rapids/main.R
|
||||||
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type
|
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type
|
||||||
COMPUTE: False
|
COMPUTE: True
|
||||||
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
|
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
|
||||||
COMPUTE: False
|
COMPUTE: False
|
||||||
TYPE: median # options: zero, mean, median or k-nearest
|
TYPE: median # options: zero, mean, median or k-nearest
|
||||||
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
||||||
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
|
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
|
||||||
COLS_VAR_THRESHOLD: True
|
COLS_VAR_THRESHOLD: True
|
||||||
ROWS_NAN_THRESHOLD: 0 # set to 1 to disable
|
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
|
||||||
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
||||||
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
||||||
DROP_HIGHLY_CORRELATED_FEATURES:
|
DROP_HIGHLY_CORRELATED_FEATURES:
|
||||||
|
@ -759,7 +759,7 @@ STANDARDIZATION: # Standardization for both providers is executed if only one of
|
||||||
|
|
||||||
PARAMS_FOR_ANALYSIS:
|
PARAMS_FOR_ANALYSIS:
|
||||||
BASELINE:
|
BASELINE:
|
||||||
COMPUTE: True
|
COMPUTE: False
|
||||||
FOLDER: data/external/baseline
|
FOLDER: data/external/baseline
|
||||||
CONTAINER: [results-survey637813_final.csv, # Slovenia
|
CONTAINER: [results-survey637813_final.csv, # Slovenia
|
||||||
results-survey358134_final.csv, # Belgium 1
|
results-survey358134_final.csv, # Belgium 1
|
||||||
|
@ -770,5 +770,5 @@ PARAMS_FOR_ANALYSIS:
|
||||||
CATEGORICAL_FEATURES: [gender]
|
CATEGORICAL_FEATURES: [gender]
|
||||||
|
|
||||||
TARGET:
|
TARGET:
|
||||||
COMPUTE: True
|
COMPUTE: False
|
||||||
LABEL: PANAS_negative_affect_mean
|
LABEL: PANAS_negative_affect_mean
|
||||||
|
|
|
@ -39,8 +39,10 @@ rapids_cleaning <- function(sensor_data_files, provider){
|
||||||
if(!data_yield_column %in% colnames(clean_features)){
|
if(!data_yield_column %in% colnames(clean_features)){
|
||||||
stop(paste0("Error: RAPIDS provider needs to clean data based on ", data_yield_column, " column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded", data_yield_unit, "' in [FEATURES]."))
|
stop(paste0("Error: RAPIDS provider needs to clean data based on ", data_yield_column, " column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded", data_yield_unit, "' in [FEATURES]."))
|
||||||
}
|
}
|
||||||
|
if (data_yield_ratio_threshold > 0) {
|
||||||
clean_features <- clean_features %>%
|
clean_features <- clean_features %>%
|
||||||
filter(.[[data_yield_column]] >= data_yield_ratio_threshold)
|
filter(.[[data_yield_column]] >= data_yield_ratio_threshold)
|
||||||
|
}
|
||||||
|
|
||||||
# Drop columns with a percentage of NA values above cols_nan_threshold
|
# Drop columns with a percentage of NA values above cols_nan_threshold
|
||||||
if(nrow(clean_features))
|
if(nrow(clean_features))
|
||||||
|
|
|
@ -36,6 +36,7 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
if not data_yield_column in features.columns:
|
if not data_yield_column in features.columns:
|
||||||
raise KeyError(f"RAPIDS provider needs to impute the selected event features based on {data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
raise KeyError(f"RAPIDS provider needs to impute the selected event features based on {data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
||||||
|
|
||||||
|
if provider["DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
|
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
|
||||||
|
|
||||||
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm')] # For later preservation of esm_cols
|
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm')] # For later preservation of esm_cols
|
||||||
|
|
|
@ -39,8 +39,10 @@ rapids_cleaning <- function(sensor_data_files, provider){
|
||||||
if(!data_yield_column %in% colnames(clean_features)){
|
if(!data_yield_column %in% colnames(clean_features)){
|
||||||
stop(paste0("Error: RAPIDS provider needs to clean data based on ", data_yield_column, " column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded", data_yield_unit, "' in [FEATURES]."))
|
stop(paste0("Error: RAPIDS provider needs to clean data based on ", data_yield_column, " column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded", data_yield_unit, "' in [FEATURES]."))
|
||||||
}
|
}
|
||||||
|
if (data_yield_ratio_threshold > 0) {
|
||||||
clean_features <- clean_features %>%
|
clean_features <- clean_features %>%
|
||||||
filter(.[[data_yield_column]] >= data_yield_ratio_threshold)
|
filter(.[[data_yield_column]] >= data_yield_ratio_threshold)
|
||||||
|
}
|
||||||
|
|
||||||
# Drop columns with a percentage of NA values above cols_nan_threshold
|
# Drop columns with a percentage of NA values above cols_nan_threshold
|
||||||
if(nrow(clean_features))
|
if(nrow(clean_features))
|
||||||
|
|
|
@ -36,6 +36,7 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
if not data_yield_column in features.columns:
|
if not data_yield_column in features.columns:
|
||||||
raise KeyError(f"RAPIDS provider needs to impute the selected event features based on {data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
raise KeyError(f"RAPIDS provider needs to impute the selected event features based on {data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
||||||
|
|
||||||
|
if provider["DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
|
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
|
||||||
|
|
||||||
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm')] # For later preservation of esm_cols
|
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm')] # For later preservation of esm_cols
|
||||||
|
|
Loading…
Reference in New Issue