Refactor resample fused location to filter fused rows earlier

replace/62f4d0b09c671f3a6dd9d1806894dd6d2cf349ff
JulioV 2019-12-09 19:15:57 -05:00
parent cb2ee1ec82
commit 3947f1ec29
1 changed files with 19 additions and 20 deletions

View File

@ -10,32 +10,31 @@ timezone <- snakemake@params[["timezone"]]
consecutive_threshold <- snakemake@params[["consecutive_threshold"]]
time_since_valid_location <- snakemake@params[["time_since_valid_location"]]
locations <- read_csv(snakemake@input[["locations"]], col_types = cols())
locations <- read_csv(snakemake@input[["locations"]], col_types = cols()) %>% filter(provider == "fused")
phone_sensed_bins <- read_csv(snakemake@input[["phone_sensed_bins"]], col_types = cols(local_date = col_character()))
if(nrow(locations) > 0){
sensed_minute_bins <- phone_sensed_bins %>%
pivot_longer(-local_date, names_to = c("hour", "bin"), names_ptypes = list(hour = integer(), bin = integer()), names_sep = "_", values_to = "sensor_count") %>%
complete(nesting(local_date, hour), bin = seq(0, 59,1)) %>%
fill(sensor_count) %>%
mutate(timestamp = as.numeric(as.POSIXct(paste0(local_date, " ", hour,":", bin,":00"), format = "%Y-%m-%d %H:%M:%S", tz = timezone)) * 1000 ) %>%
filter(sensor_count > 0) %>%
select(timestamp)
pivot_longer(-local_date, names_to = c("hour", "bin"), names_ptypes = list(hour = integer(), bin = integer()), names_sep = "_", values_to = "sensor_count") %>%
complete(nesting(local_date, hour), bin = seq(0, 59,1)) %>%
fill(sensor_count) %>%
mutate(timestamp = as.numeric(as.POSIXct(paste0(local_date, " ", hour,":", bin,":00"), format = "%Y-%m-%d %H:%M:%S", tz = timezone)) * 1000 ) %>%
filter(sensor_count > 0) %>%
select(timestamp)
resampled_locations <- locations %>%
filter(provider == "fused") %>%
bind_rows(sensed_minute_bins) %>%
arrange(timestamp) %>%
# We group and therefore, fill in, missing rows that appear after a valid fused location record and exist
# within consecutive_threshold minutes from each other
mutate(consecutive_time_diff = c(1, diff(timestamp)),
resample_group = cumsum(!is.na(double_longitude) | consecutive_time_diff > (1000 * 60 * consecutive_threshold))) %>%
group_by(resample_group) %>%
# drop rows that are logged after time_since_valid_location hours from the last valid fused location
filter((timestamp - first(timestamp) < (1000 * 60 * 60 * time_since_valid_location))) %>%
fill(-timestamp, -resample_group) %>%
select(-consecutive_time_diff) %>%
drop_na(double_longitude, double_latitude, accuracy)
bind_rows(sensed_minute_bins) %>%
arrange(timestamp) %>%
# We group and therefore, fill in, missing rows that appear after a valid fused location record and exist
# within consecutive_threshold minutes from each other
mutate(consecutive_time_diff = c(1, diff(timestamp)),
resample_group = cumsum(!is.na(double_longitude) | consecutive_time_diff > (1000 * 60 * consecutive_threshold))) %>%
group_by(resample_group) %>%
# drop rows that are logged after time_since_valid_location hours from the last valid fused location
filter((timestamp - first(timestamp) < (1000 * 60 * 60 * time_since_valid_location))) %>%
fill(-timestamp, -resample_group) %>%
select(-consecutive_time_diff) %>%
drop_na(double_longitude, double_latitude, accuracy)
write.csv(resampled_locations,snakemake@output[[1]], row.names = F)
} else {