Added "activity_change_count" feature
parent
1d242abbe1
commit
336ce12270
|
@ -4,37 +4,49 @@ import scipy.stats as stats
|
||||||
|
|
||||||
#Read csv into a pandas dataframe
|
#Read csv into a pandas dataframe
|
||||||
data = pd.read_csv(snakemake.input[0])
|
data = pd.read_csv(snakemake.input[0])
|
||||||
|
column = ['local_date_time','count','most_common_activity','number_unique_activities','activity_change_count']
|
||||||
|
finalDataset = pd.DataFrame(columns=column)
|
||||||
|
finalDataset.set_index('local_date_time',inplace=True)
|
||||||
|
|
||||||
|
if data.empty:
|
||||||
|
finalDataset.to_csv(snakemake.output[0])
|
||||||
|
|
||||||
#Resampling each of the required features as a pandas series
|
else:
|
||||||
data.local_date_time = pd.to_datetime(data.local_date_time)
|
#Resampling each of the required features as a pandas series
|
||||||
resampledData = data.set_index(data.local_date_time)
|
data.local_date_time = pd.to_datetime(data.local_date_time)
|
||||||
|
resampledData = data.set_index(data.local_date_time)
|
||||||
|
resampledData = resampledData[~resampledData.index.duplicated()]
|
||||||
|
resampledData.rename_axis('time',axis='columns',inplace=True)
|
||||||
|
resampledData.drop(columns=['local_date_time'],inplace=True)
|
||||||
|
|
||||||
resampledData = resampledData[~resampledData.index.duplicated()]
|
#Finding count grouped by day
|
||||||
resampledData.rename_axis('time',axis='columns',inplace=True)
|
count = pd.DataFrame()
|
||||||
|
count = resampledData['activity_type'].resample('D').count()
|
||||||
|
count = count.rename(columns={"activity_type":"count"})
|
||||||
|
|
||||||
resampledData.drop(columns=['local_date_time'],inplace=True)
|
#Finding most common activity of the day
|
||||||
|
mostCommonActivity = pd.DataFrame()
|
||||||
|
mostCommonActivity = resampledData['activity_type'].resample('D').apply(lambda x:stats.mode(x)[0])
|
||||||
|
mostCommonActivity = mostCommonActivity.rename(columns={'activity_type':'most_common_activity'})
|
||||||
|
|
||||||
#Finding count grouped by day
|
#finding different number of activities during a day
|
||||||
count = pd.DataFrame()
|
uniqueActivities = pd.DataFrame()
|
||||||
count = resampledData['activity_type'].resample('D').count()
|
# countChanges = resampledData.to_period('D').groupby(resampledData.index)['activity_type'].value_counts()
|
||||||
count = count.rename(columns={"activity_type":"count"})
|
uniqueActivities = resampledData['activity_type'].resample('D').nunique()
|
||||||
|
|
||||||
#Finding most common activity of the day
|
#finding Number of times activity changed
|
||||||
mostCommonActivity = pd.DataFrame()
|
resampledData['activity_type_shift'] = resampledData['activity_type'].shift()
|
||||||
mostCommonActivity = resampledData['activity_type'].resample('D').apply(lambda x:stats.mode(x)[0])
|
resampledData['activity_type_shift'].fillna(resampledData['activity_type'].head(1),inplace=True)
|
||||||
mostCommonActivity = mostCommonActivity.rename(columns={'activity_type':'most_common_activity'})
|
#resampledData['different_activity'] = resampledData['activity_type'].apply(lambda x: 0 if resampledData['activity_type'] == resampledData['activity_type_shift'] else 1, axis=1)
|
||||||
|
resampledData['different_activity']=np.where(resampledData['activity_type']!=resampledData['activity_type_shift'],1,0)
|
||||||
|
countChanges = pd.DataFrame()
|
||||||
|
countChanges = resampledData['different_activity'].resample('D').sum()
|
||||||
|
|
||||||
#finding different number of activities during a day
|
#Concatenating all the processed data only, no other sensor data is added here for simplicity
|
||||||
countChanges = pd.DataFrame()
|
finalDataset = pd.DataFrame()
|
||||||
# countChanges = resampledData.to_period('D').groupby(resampledData.index)['activity_type'].value_counts()
|
finalDataset = pd.concat([count,mostCommonActivity,uniqueActivities,countChanges],axis=1)
|
||||||
countChanges = resampledData['activity_type'].resample('D').nunique()
|
finalDataset.rename(columns={0:"count",1:'most_common_activity','activity_type':'number_unique_activities','different_activity':'activity_change_count'},inplace = True)
|
||||||
|
|
||||||
#Concatenating all the processed data only, no other sensor data is added here for simplicity
|
#Export final dataframe with extracted features to respective PID
|
||||||
finalDataset = pd.DataFrame()
|
finalDataset.to_csv(snakemake.output[0])
|
||||||
finalDataset = pd.concat([count,mostCommonActivity,countChanges],axis=1)
|
|
||||||
finalDataset.rename(columns={0:"count",1:'most_common_activity','activity_type':'activity_changes_count'},inplace = True)
|
|
||||||
|
|
||||||
#Export final dataframe with extracted features to respective PID
|
|
||||||
finalDataset.to_csv(snakemake.output[0])
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue