Add tqdm package to environment.yaml
parent
3ac12e7dad
commit
2e553dc9e7
|
@ -1,4 +1,4 @@
|
|||
name: rapids202012
|
||||
name: rapids202108
|
||||
channels:
|
||||
- conda-forge
|
||||
- defaults
|
||||
|
@ -7,14 +7,14 @@ dependencies:
|
|||
- appdirs=1.4.4
|
||||
- arrow=0.16.0
|
||||
- asn1crypto=1.4.0
|
||||
- astropy=4.2
|
||||
- astropy=4.2.1
|
||||
- attrs=20.3.0
|
||||
- binaryornot=0.4.4
|
||||
- blas=1.0
|
||||
- brotlipy=0.7.0
|
||||
- bzip2=1.0.8
|
||||
- ca-certificates=2020.12.8
|
||||
- certifi=2020.12.5
|
||||
- ca-certificates=2021.7.5
|
||||
- certifi=2021.5.30
|
||||
- cffi=1.14.4
|
||||
- chardet=3.0.4
|
||||
- click=7.1.2
|
||||
|
@ -42,6 +42,7 @@ dependencies:
|
|||
- libffi=3.3
|
||||
- libgfortran
|
||||
- liblapack=3.8.0
|
||||
- libopenblas=0.3.10
|
||||
- libxgboost=0.90
|
||||
- lightgbm=3.1.1
|
||||
- llvm-openmp=10.0.0
|
||||
|
@ -54,7 +55,8 @@ dependencies:
|
|||
- ncurses=6.2
|
||||
- numpy=1.19.2
|
||||
- numpy-base=1.19.2
|
||||
- openssl=1.1.1i
|
||||
- openblas=0.3.4
|
||||
- openssl=1.1.1k
|
||||
- pandas=1.1.5
|
||||
- pbr=5.5.1
|
||||
- pip=20.3.3
|
||||
|
@ -83,6 +85,7 @@ dependencies:
|
|||
- sqlite=3.33.0
|
||||
- threadpoolctl=2.1.0
|
||||
- tk=8.6.10
|
||||
- tqdm=4.62.0
|
||||
- urllib3=1.25.11
|
||||
- wheel=0.36.2
|
||||
- whichcraft=0.6.1
|
||||
|
@ -106,4 +109,4 @@ dependencies:
|
|||
- snakemake==5.30.2
|
||||
- toposort==1.5
|
||||
- traitlets==4.3.3
|
||||
prefix: /usr/local/Caskroom/miniconda/base/envs/rapids202012
|
||||
prefix: /usr/local/Caskroom/miniconda/base/envs/rapids202108
|
||||
|
|
|
@ -24,9 +24,6 @@ def barnett_daily_features(snakemake):
|
|||
warnings.warn("Barnett's location features cannot be computed because there are no rows with an accuracy value lower than ACCURACY_LIMIT: {}".format(accuracy_limit))
|
||||
location_features = pd.DataFrame(columns=features_to_compute)
|
||||
else:
|
||||
print(location_data)
|
||||
print(nrows)
|
||||
print(loc_daily_data_len)
|
||||
location_minutes_used = location_data.groupby(["local_date", "local_hour"])[["local_minute"]].nunique().reset_index().groupby("local_date").sum()[["local_minute"]].rename(columns={"local_minute": "minutes_data_used"})
|
||||
timezone = mode(location_data["local_timezone"].values)
|
||||
location_df = location_data[["timestamp", "double_latitude", "double_longitude", "double_altitude", "accuracy"]]
|
||||
|
|
Loading…
Reference in New Issue