Add light features
parent
a67eeda255
commit
2b4e29ce6e
|
@ -33,6 +33,9 @@ rule all:
|
|||
expand("data/processed/{pid}/screen_{day_segment}.csv",
|
||||
pid = config["PIDS"],
|
||||
day_segment = config["SCREEN"]["DAY_SEGMENTS"]),
|
||||
expand("data/processed/{pid}/light_{day_segment}.csv",
|
||||
pid = config["PIDS"],
|
||||
day_segment = config["LIGHT"]["DAY_SEGMENTS"]),
|
||||
# Reports
|
||||
expand("reports/figures/{pid}/{sensor}_heatmap_rows.html", pid=config["PIDS"], sensor=config["SENSORS"]),
|
||||
expand("reports/figures/{pid}/compliance_heatmap.html", pid=config["PIDS"]),
|
||||
|
|
|
@ -72,4 +72,8 @@ SCREEN:
|
|||
DAY_SEGMENTS: *day_segments
|
||||
METRICS_EVENTS: ["counton", "countunlock", "unlocksperminute"]
|
||||
METRICS_DELTAS: ["sumduration", "maxduration", "minduration", "avgduration", "stdduration"]
|
||||
EPISODES: ["unlock"]
|
||||
EPISODES: ["unlock"]
|
||||
|
||||
LIGHT:
|
||||
DAY_SEGMENTS: *day_segments
|
||||
METRICS: ["count", "maxlux", "minlux", "avglux", "medianlux", "stdlux"]
|
||||
|
|
|
@ -108,3 +108,14 @@ rule screen_metrics:
|
|||
"data/processed/{pid}/screen_{day_segment}.csv"
|
||||
script:
|
||||
"../src/features/screen_metrics.py"
|
||||
|
||||
rule light_metrics:
|
||||
input:
|
||||
"data/raw/{pid}/light_with_datetime.csv",
|
||||
params:
|
||||
day_segment = "{day_segment}",
|
||||
metrics = config["LIGHT"]["METRICS"],
|
||||
output:
|
||||
"data/processed/{pid}/light_{day_segment}.csv"
|
||||
script:
|
||||
"../src/features/light_metrics.py"
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
light_data = pd.read_csv(snakemake.input[0], parse_dates=["local_date_time", "local_date"])
|
||||
day_segment = snakemake.params["day_segment"]
|
||||
metrics = snakemake.params["metrics"]
|
||||
|
||||
light_features = pd.DataFrame(columns=["local_date"] + ["light_" + day_segment + "_" + x for x in metrics])
|
||||
if not light_data.empty:
|
||||
if day_segment != "daily":
|
||||
light_data =light_data[light_data["local_day_segment"] == day_segment]
|
||||
|
||||
if not light_data.empty:
|
||||
light_features = pd.DataFrame()
|
||||
if "count" in metrics:
|
||||
light_features["light_" + day_segment + "_count"] = light_data.groupby(["local_date"]).count()["timestamp"]
|
||||
|
||||
# get light ambient luminance related features
|
||||
if "maxlux" in metrics:
|
||||
light_features["light_" + day_segment + "_maxlux"] = light_data.groupby(["local_date"])["double_light_lux"].max()
|
||||
if "minlux" in metrics:
|
||||
light_features["light_" + day_segment + "_minlux"] = light_data.groupby(["local_date"])["double_light_lux"].min()
|
||||
if "avglux" in metrics:
|
||||
light_features["light_" + day_segment + "_avglux"] = light_data.groupby(["local_date"])["double_light_lux"].mean()
|
||||
if "medianlux" in metrics:
|
||||
light_features["light_" + day_segment + "_medianlux"] = light_data.groupby(["local_date"])["double_light_lux"].median()
|
||||
if "stdlux" in metrics:
|
||||
light_features["light_" + day_segment + "_stdlux"] = light_data.groupby(["local_date"])["double_light_lux"].std()
|
||||
|
||||
light_features = light_features.fillna(0).reset_index()
|
||||
|
||||
light_features.to_csv(snakemake.output[0], index=False)
|
Loading…
Reference in New Issue