Merge branch 'imputation_and_cleaning' of https://repo.ijs.si/junoslukan/rapids into imputation_and_cleaning
commit
247d758cb7
|
@ -429,10 +429,10 @@ if config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["COMPUTE"]:
|
|||
|
||||
# Targets (labels)
|
||||
if config["PARAMS_FOR_ANALYSIS"]["TARGET"]["COMPUTE"]:
|
||||
# files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/input.csv", pid=config["PIDS"]))
|
||||
# files_to_compute.extend(expand("data/processed/models/population_model/input.csv"))
|
||||
files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/z_input.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/models/population_model/z_input.csv"))
|
||||
files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/input.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/models/population_model/input.csv"))
|
||||
# files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/z_input.csv", pid=config["PIDS"]))
|
||||
# files_to_compute.extend(expand("data/processed/models/population_model/z_input.csv"))
|
||||
|
||||
#files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/output_{cv_method}/baselines.csv", pid=config["PIDS"], cv_method=config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"]))
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
########################################################################################################################
|
||||
|
||||
# See https://www.rapids.science/latest/setup/configuration/#participant-files
|
||||
PIDS: ['p01'] #['p031', 'p032', 'p033', 'p034', 'p035', 'p036', 'p037', 'p038', 'p039', 'p040', 'p042', 'p043', 'p044', 'p045', 'p046', 'p049', 'p050', 'p052', 'p053', 'p054', 'p055', 'p057', 'p058', 'p059', 'p060', 'p061', 'p062', 'p064', 'p067', 'p068', 'p069', 'p070', 'p071', 'p072', 'p073', 'p074', 'p075', 'p076', 'p077', 'p078', 'p079', 'p080', 'p081', 'p082', 'p083', 'p084', 'p085', 'p086', 'p088', 'p089', 'p090', 'p091', 'p092', 'p093', 'p106', 'p107']
|
||||
PIDS: ['p01', 'p02'] #['p031', 'p032', 'p033', 'p034', 'p035', 'p036', 'p037', 'p038', 'p039', 'p040', 'p042', 'p043', 'p044', 'p045', 'p046', 'p049', 'p050', 'p052', 'p053', 'p054', 'p055', 'p057', 'p058', 'p059', 'p060', 'p061', 'p062', 'p064', 'p067', 'p068', 'p069', 'p070', 'p071', 'p072', 'p073', 'p074', 'p075', 'p076', 'p077', 'p078', 'p079', 'p080', 'p081', 'p082', 'p083', 'p084', 'p085', 'p086', 'p088', 'p089', 'p090', 'p091', 'p092', 'p093', 'p106', 'p107']
|
||||
|
||||
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
|
||||
CREATE_PARTICIPANT_FILES:
|
||||
|
@ -70,7 +70,6 @@ PHONE_ACCELEROMETER:
|
|||
COMPUTE: False
|
||||
FEATURES: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
||||
SRC_SCRIPT: src/features/phone_accelerometer/rapids/main.py
|
||||
|
||||
PANDA:
|
||||
COMPUTE: False
|
||||
VALID_SENSED_MINUTES: False
|
||||
|
|
|
@ -30,22 +30,22 @@ rule baseline_features:
|
|||
|
||||
rule select_target:
|
||||
input:
|
||||
cleaned_sensor_features = "data/processed/features/{pid}/z_all_sensor_features_cleaned_straw_py.csv"
|
||||
cleaned_sensor_features = "data/processed/features/{pid}/all_sensor_features_cleaned_straw_py.csv"
|
||||
params:
|
||||
target_variable = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
||||
output:
|
||||
"data/processed/models/individual_model/{pid}/z_input.csv"
|
||||
"data/processed/models/individual_model/{pid}/input.csv"
|
||||
script:
|
||||
"../src/models/select_targets.py"
|
||||
|
||||
rule merge_features_and_targets_for_population_model:
|
||||
input:
|
||||
cleaned_sensor_features = "data/processed/features/all_participants/z_all_sensor_features_cleaned_straw_py.csv",
|
||||
cleaned_sensor_features = "data/processed/features/all_participants/all_sensor_features_cleaned_straw_py.csv",
|
||||
demographic_features = expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]),
|
||||
params:
|
||||
target_variable=config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
||||
output:
|
||||
"data/processed/models/population_model/z_input.csv"
|
||||
"data/processed/models/population_model/input.csv"
|
||||
script:
|
||||
"../src/models/merge_features_and_targets_for_population_model.py"
|
||||
|
||||
|
|
|
@ -17,12 +17,13 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
with open('config.yaml', 'r') as stream:
|
||||
config = yaml.load(stream, Loader=yaml.FullLoader)
|
||||
|
||||
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
|
||||
|
||||
# (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
|
||||
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
|
||||
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
|
||||
features = features[features['phone_esm_straw_' + target].notna()].reset_index()
|
||||
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
|
||||
|
||||
# TODO: reorder the cleaning steps so it makes sense for the analysis
|
||||
# TODO: add conditions that differentiates cleaning steps for standardized and nonstandardized features, for this
|
||||
# the snakemake rules will also have to come with additional parameter (in rules/features.smk)
|
||||
|
||||
|
@ -64,10 +65,10 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
if provider["DATA_YIELD_RATIO_THRESHOLD"]:
|
||||
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
|
||||
|
||||
# (3) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved)
|
||||
# (3) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
|
||||
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
||||
|
||||
# (4) REMOVE COLS WHERE VARIANCE IS 0 TODO: preveri za local_segment stolpce
|
||||
# (4) REMOVE COLS WHERE VARIANCE IS 0
|
||||
if provider["COLS_VAR_THRESHOLD"]:
|
||||
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
|
||||
|
||||
|
@ -91,32 +92,36 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
|
||||
features.drop(to_drop, axis=1, inplace=True)
|
||||
|
||||
# Remove rows if threshold of NaN values is passed
|
||||
# (6) Remove rows if threshold of NaN values is passed
|
||||
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
|
||||
features.dropna(axis=0, thresh=min_count, inplace=True)
|
||||
|
||||
|
||||
sns.set(rc={"figure.figsize":(16, 8)})
|
||||
sns.heatmap(features.isna(), cbar=False)
|
||||
plt.savefig(f'features_nans_bf_knn.png', bbox_inches='tight')
|
||||
|
||||
## STANDARDIZATION - should it happen before or after kNN imputation?
|
||||
# TODO: check if there are additional columns that need to be excluded from the standardization
|
||||
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
|
||||
## (7) STANDARDIZATION
|
||||
|
||||
if provider["STANDARDIZATION"]:
|
||||
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
||||
|
||||
# KNN IMPUTATION
|
||||
# (8) KNN IMPUTATION
|
||||
impute_cols = [col for col in features.columns if col not in excluded_columns]
|
||||
features[impute_cols] = impute(features[impute_cols], method="knn")
|
||||
|
||||
# (9) STANDARDIZATION AGAIN
|
||||
|
||||
if provider["STANDARDIZATION"]:
|
||||
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
||||
|
||||
|
||||
sns.set(rc={"figure.figsize":(16, 8)})
|
||||
sns.heatmap(features.isna(), cbar=False)
|
||||
plt.savefig(f'features_nans_af_knn.png', bbox_inches='tight')
|
||||
|
||||
# VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
|
||||
if features.isna.any().any():
|
||||
# (9) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
|
||||
if features.isna().any().any():
|
||||
raise ValueError
|
||||
|
||||
sys.exit()
|
||||
|
|
|
@ -23,13 +23,6 @@ compute_wifi_feature <- function(data, feature, time_segment){
|
|||
|
||||
data <- data %>% filter_data_by_segment(time_segment)
|
||||
|
||||
print(data %>%
|
||||
filter(bssid == mostuniquedevice) %>%
|
||||
group_by(local_segment) %>%
|
||||
summarise(!!feature := n()))
|
||||
|
||||
raise
|
||||
|
||||
return(data %>%
|
||||
filter(bssid == mostuniquedevice) %>%
|
||||
group_by(local_segment) %>%
|
||||
|
@ -55,6 +48,6 @@ rapids_features <- function(sensor_data_files, time_segment, provider){
|
|||
feature <- compute_wifi_feature(wifi_data, feature_name, time_segment)
|
||||
features <- merge(features, feature, by="local_segment", all = TRUE)
|
||||
}
|
||||
# features <- features %>% mutate_all(~replace(., is.na(.), 0))
|
||||
features <- features %>% mutate_all(~replace(., is.na(.), 0))
|
||||
return(features)
|
||||
}
|
||||
|
|
|
@ -3,8 +3,8 @@ import seaborn as sns
|
|||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
participant = "p031"
|
||||
all_sensors = ["eda", "bvp", "ibi", "temp", "acc"]
|
||||
participant = "p01"
|
||||
all_sensors = ["eda", "ibi", "temp", "acc"]
|
||||
|
||||
for sensor in all_sensors:
|
||||
|
||||
|
|
Loading…
Reference in New Issue