Get the name of the questionnaire from Snakefile.
parent
679f00dc19
commit
23f0aaba3a
|
@ -327,7 +327,7 @@ rule conversation_r_features:
|
||||||
rule preprocess_esm:
|
rule preprocess_esm:
|
||||||
input: "data/raw/{pid}/phone_esm_with_datetime.csv"
|
input: "data/raw/{pid}/phone_esm_with_datetime.csv"
|
||||||
params:
|
params:
|
||||||
questionnaire_names = lambda wildcards: config["PHONE_ESM"]["PROVIDERS"][wildcards.feature]["FEATURES"]
|
questionnaire_name = "{feature}"
|
||||||
output: "data/interim/{pid}/phone_esm_{feature}_clean.csv"
|
output: "data/interim/{pid}/phone_esm_{feature}_clean.csv"
|
||||||
script:
|
script:
|
||||||
"../src/features/phone_esm/straw/preprocess.py"
|
"../src/features/phone_esm/straw/preprocess.py"
|
||||||
|
|
|
@ -1,11 +1,10 @@
|
||||||
from esm_preprocess import *
|
from esm_preprocess import *
|
||||||
|
|
||||||
questionnaire_names = snakemake.params["questionnaire_names"]
|
questionnaire_name = snakemake.params["questionnaire_name"]
|
||||||
|
|
||||||
df_esm = pd.read_csv(snakemake.input[0])
|
df_esm = pd.read_csv(snakemake.input[0])
|
||||||
df_esm_preprocessed = preprocess_esm(df_esm)
|
df_esm_preprocessed = preprocess_esm(df_esm)
|
||||||
|
|
||||||
for questionnaire_name in questionnaire_names:
|
|
||||||
try:
|
try:
|
||||||
questionnaire_id = QUESTIONNAIRE_IDS[questionnaire_name]
|
questionnaire_id = QUESTIONNAIRE_IDS[questionnaire_name]
|
||||||
except ValueError:
|
except ValueError:
|
||||||
|
|
Loading…
Reference in New Issue