Delete unused files
parent
98ebf9bd13
commit
1ed85f1180
|
@ -1,36 +0,0 @@
|
|||
import pandas as pd
|
||||
from applications_foreground.applications_foreground_base import base_applications_foreground_features
|
||||
|
||||
apps_data = pd.read_csv(snakemake.input[0], parse_dates=["local_date_time", "local_date"], encoding="ISO-8859-1")
|
||||
day_segment = snakemake.params["day_segment"]
|
||||
single_categories = snakemake.params["single_categories"]
|
||||
multiple_categories_with_genres = snakemake.params["multiple_categories"]
|
||||
single_apps = snakemake.params["single_apps"]
|
||||
excluded_categories = snakemake.params["excluded_categories"]
|
||||
excluded_apps = snakemake.params["excluded_apps"]
|
||||
requested_features = snakemake.params["features"]
|
||||
apps_features = pd.DataFrame(columns=["local_date"])
|
||||
|
||||
single_categories = list(set(single_categories) - set(excluded_categories))
|
||||
multiple_categories = list(multiple_categories_with_genres.keys() - set(excluded_categories))
|
||||
apps = list(set(single_apps) - set(excluded_apps))
|
||||
type_count = len(single_categories) + len(multiple_categories) + len(apps)
|
||||
|
||||
params = {}
|
||||
params["multiple_categories_with_genres"] = multiple_categories_with_genres
|
||||
params["single_categories"] = single_categories
|
||||
params["multiple_categories"] = multiple_categories
|
||||
params["apps"] = apps
|
||||
|
||||
# exclude categories in the excluded_categories list
|
||||
if "system_apps" in excluded_categories:
|
||||
apps_data = apps_data[apps_data["is_system_app"] == 0]
|
||||
apps_data = apps_data[~apps_data["genre"].isin(excluded_categories)]
|
||||
# exclude apps in the excluded_apps list
|
||||
apps_data = apps_data[~apps_data["package_name"].isin(excluded_apps)]
|
||||
|
||||
apps_features = apps_features.merge(base_applications_foreground_features(apps_data, day_segment, requested_features, params), on="local_date", how="outer")
|
||||
|
||||
assert len(requested_features) * type_count + 1 == apps_features.shape[1], "The number of features in the output dataframe (=" + str(apps_features.shape[1]) + ") does not match the expected value (=" + str(len(requested_features)) + " + 1). Verify your application foreground feature extraction functions"
|
||||
|
||||
apps_features.to_csv(snakemake.output[0], index=False)
|
|
@ -1,20 +0,0 @@
|
|||
source("renv/activate.R")
|
||||
source("src/features/bluetooth/bluetooth_base.R")
|
||||
library(dplyr)
|
||||
library(tidyr)
|
||||
|
||||
bluetooth_data <- read.csv(snakemake@input[[1]], stringsAsFactors = FALSE)
|
||||
day_segments <- read.csv(snakemake@input[["day_segments"]], stringsAsFactors = FALSE)
|
||||
requested_features <- snakemake@params[["features"]]
|
||||
features = data.frame(local_date = character(), stringsAsFactors = FALSE)
|
||||
|
||||
day_segments <- day_segments %>% distinct(label) %>% pull(label)
|
||||
# Compute base bluetooth features
|
||||
for (day_segment in day_segments)
|
||||
features <- merge(features, base_bluetooth_features(bluetooth_data, day_segment, requested_features), by="local_date", all = TRUE)
|
||||
|
||||
if(ncol(features) != (length(requested_features)) * length(day_segments) + 1)
|
||||
stop(paste0("The number of features in the output dataframe (=", ncol(features),") does not match the expected value (=", length(requested_features)," + 1). Verify your bluetooth feature extraction functions"))
|
||||
|
||||
|
||||
write.csv(features, snakemake@output[[1]], row.names = FALSE)
|
|
@ -1,23 +0,0 @@
|
|||
source("renv/activate.R")
|
||||
source("src/features/call/call_base.R")
|
||||
library(dplyr)
|
||||
|
||||
calls <- read.csv(snakemake@input[[1]], stringsAsFactors = FALSE)
|
||||
day_segments_labels <- read.csv(snakemake@input[["day_segments_labels"]])
|
||||
requested_features <- snakemake@params[["features"]]
|
||||
call_type <- snakemake@params[["call_type"]]
|
||||
features = data.frame(local_segment = character(), stringsAsFactors = FALSE)
|
||||
|
||||
day_segments <- day_segments_labels %>% pull(label)
|
||||
for (day_segment in day_segments)
|
||||
features <- merge(features, base_call_features(calls, call_type, day_segment, requested_features), all = TRUE)
|
||||
|
||||
if(ncol(features) != length(requested_features) + 1)
|
||||
stop(paste0("The number of features in the output dataframe (=", ncol(features),") does not match the expected value (=", length(requested_features)," + 1). Verify your Call feature extraction functions"))
|
||||
|
||||
features <- features %>% separate(col = local_segment,
|
||||
into = c("local_segment_label", "local_start_date", "local_start_time", "local_end_date", "local_end_time"),
|
||||
sep = "#",
|
||||
remove = FALSE)
|
||||
|
||||
write.csv(features, snakemake@output[[1]], row.names = FALSE)
|
|
@ -1,15 +0,0 @@
|
|||
import pandas as pd
|
||||
from conversation.conversation_base import base_conversation_features
|
||||
|
||||
conversation_data = pd.read_csv(snakemake.input[0], parse_dates=["local_date_time", "local_date"])
|
||||
day_segment = snakemake.params["day_segment"]
|
||||
requested_features = snakemake.params["features"]
|
||||
recordingMinutes = snakemake.params["recordingMinutes"]
|
||||
pausedMinutes = snakemake.params["pausedMinutes"]
|
||||
expectedMinutes = 1440 / (recordingMinutes + pausedMinutes)
|
||||
conversation_features = pd.DataFrame(columns=["local_date"])
|
||||
|
||||
conversation_features = conversation_features.merge(base_conversation_features(conversation_data, day_segment, requested_features,recordingMinutes,pausedMinutes,expectedMinutes), on="local_date", how="outer")
|
||||
assert len(requested_features) + 1 == conversation_features.shape[1], "The number of features in the output dataframe (=" + str(conversation_features.shape[1]) + ") does not match the expected value (=" + str(len(requested_features)) + " + 1). Verify your conversation feature extraction functions"
|
||||
|
||||
conversation_features.to_csv(snakemake.output[0], index=False)
|
|
@ -1,13 +0,0 @@
|
|||
import pandas as pd
|
||||
from light.light_base import base_light_features
|
||||
|
||||
light_data = pd.read_csv(snakemake.input[0], parse_dates=["local_date_time", "local_date"])
|
||||
day_segment = snakemake.params["day_segment"]
|
||||
requested_features = snakemake.params["features"]
|
||||
light_features = pd.DataFrame(columns=["local_date"])
|
||||
|
||||
light_features = light_features.merge(base_light_features(light_data, day_segment, requested_features), on="local_date", how="outer")
|
||||
|
||||
assert len(requested_features) + 1 == light_features.shape[1], "The number of features in the output dataframe (=" + str(light_features.shape[1]) + ") does not match the expected value (=" + str(len(requested_features)) + " + 1). Verify your light feature extraction functions"
|
||||
|
||||
light_features.to_csv(snakemake.output[0], index=False)
|
|
@ -1,26 +0,0 @@
|
|||
# If you want to implement extra features, source(..) a new file and duplicate the line "features <- merge(...)", then
|
||||
# swap base_sms_features(...) for your own function
|
||||
|
||||
source("renv/activate.R")
|
||||
source("src/features/messages/messages_base.R")
|
||||
library("dplyr", warn.conflicts = FALSE)
|
||||
|
||||
messages <- read.csv(snakemake@input[[1]])
|
||||
day_segments_labels <- read.csv(snakemake@input[["day_segments_labels"]])
|
||||
requested_features <- snakemake@params[["features"]]
|
||||
messages_type <- snakemake@params[["messages_type"]]
|
||||
features <- data.frame(local_segment = character(), stringsAsFactors = FALSE)
|
||||
|
||||
day_segments <- day_segments_labels %>% pull(label)
|
||||
for (day_segment in day_segments)
|
||||
features <- merge(features, base_messages_features(messages, messages_type, day_segment, requested_features), all = TRUE)
|
||||
|
||||
if(ncol(features) != length(requested_features) + 1)
|
||||
stop(paste0("The number of features in the output dataframe (=", ncol(features),") does not match the expected value (=", length(requested_features)," + 1). Verify your Messages (SMS) feature extraction functions"))
|
||||
|
||||
features <- features %>% separate(col = local_segment,
|
||||
into = c("local_segment_label", "local_start_date", "local_start_time", "local_end_date", "local_end_time"),
|
||||
sep = "#",
|
||||
remove = FALSE)
|
||||
|
||||
write.csv(features, snakemake@output[[1]], row.names = FALSE)
|
|
@ -1,33 +0,0 @@
|
|||
source("renv/activate.R")
|
||||
source("src/features/wifi/wifi_base.R")
|
||||
library("dplyr")
|
||||
|
||||
if(!is.null(snakemake@input[["visible_access_points"]]) && is.null(snakemake@input[["connected_access_points"]])){
|
||||
wifi_data <- read.csv(snakemake@input[["visible_access_points"]], stringsAsFactors = FALSE)
|
||||
wifi_data <- wifi_data %>% mutate(connected = 0)
|
||||
} else if(is.null(snakemake@input[["visible_access_points"]]) && !is.null(snakemake@input[["connected_access_points"]])){
|
||||
wifi_data <- read.csv(snakemake@input[["connected_access_points"]], stringsAsFactors = FALSE)
|
||||
wifi_data <- wifi_data %>% mutate(connected = 1)
|
||||
} else if(!is.null(snakemake@input[["visible_access_points"]]) && !is.null(snakemake@input[["connected_access_points"]])){
|
||||
visible_access_points <- read.csv(snakemake@input[["visible_access_points"]], stringsAsFactors = FALSE)
|
||||
visible_access_points <- visible_access_points %>% mutate(connected = 0)
|
||||
connected_access_points <- read.csv(snakemake@input[["connected_access_points"]], stringsAsFactors = FALSE)
|
||||
connected_access_points <- connected_access_points %>% mutate(connected = 1)
|
||||
wifi_data <- bind_rows(visible_access_points, connected_access_points) %>% arrange(timestamp)
|
||||
}
|
||||
|
||||
wifi_data <- read.csv(snakemake@input[[1]], stringsAsFactors = FALSE)
|
||||
day_segments <- read.csv(snakemake@input[["day_segments"]])
|
||||
requested_features <- snakemake@params[["features"]]
|
||||
features = data.frame(local_date = character(), stringsAsFactors = FALSE)
|
||||
|
||||
|
||||
day_segments <- day_segments %>% distinct(label) %>% pull(label)
|
||||
# Compute base wifi features
|
||||
for (day_segment in day_segments)
|
||||
features <- merge(features, base_wifi_features(wifi_data, day_segment, requested_features), by="local_date", all = TRUE)
|
||||
|
||||
if(ncol(features) != (length(requested_features)) * length(day_segments) + 1)
|
||||
stop(paste0("The number of features in the output dataframe (=", ncol(features),") does not match the expected value (=", length(requested_features)," + 1). Verify your wifi feature extraction functions"))
|
||||
|
||||
write.csv(features, snakemake@output[[1]], row.names = FALSE)
|
Loading…
Reference in New Issue