Redefined cleaning steps after revision
parent
247d758cb7
commit
19aa8707c0
|
@ -19,6 +19,7 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
|
||||
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
|
||||
|
||||
|
||||
# (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
|
||||
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
|
||||
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
|
||||
|
@ -36,9 +37,16 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
# because of the lack of the availability. Secondly, there's a high importance that features data frame is checked if and NaN
|
||||
# values still exist.
|
||||
|
||||
# (2) PARTIAL IMPUTATION: IMPUTE DATA DEPENDEND ON THE FEATURES GROUP (e.g., phone or E4 features)
|
||||
# (2) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
|
||||
# TODO: determine the threshold at which the column should be removed because of too many Nans.
|
||||
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
||||
|
||||
# (3.1) QUALITY CHECK (DATA YIELD COLUMN) which determines if the row stays or not (if either E4 or phone is low quality the row is useless - TODO: determine threshold)
|
||||
# Here, the imputation is still not executed - only quality check
|
||||
|
||||
impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"]
|
||||
if impute_phone_features["COMPUTE"]:
|
||||
|
||||
if True: #impute_phone_features["COMPUTE"]:
|
||||
if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns:
|
||||
raise KeyError("RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].")
|
||||
|
||||
|
@ -55,6 +63,8 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
|
||||
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
|
||||
|
||||
print(features[features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']][phone_cols])
|
||||
|
||||
# ??? Drop rows with the value of data_yield_column less than data_yield_ratio_threshold ???
|
||||
data_yield_unit = provider["DATA_YIELD_FEATURE"].split("_")[3].lower()
|
||||
data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + data_yield_unit
|
||||
|
@ -65,10 +75,13 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
if provider["DATA_YIELD_RATIO_THRESHOLD"]:
|
||||
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
|
||||
|
||||
# (3) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
|
||||
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
||||
# (3.2) (optional) DOES ROW CONSIST OF ENOUGH NON-NAN VALUES? Possible some of these examples could still pass previous condition but not this one?
|
||||
|
||||
# (4) REMOVE COLS WHERE VARIANCE IS 0
|
||||
# (4) IMPUTATION: IMPUTE DATA WITH KNN METHOD
|
||||
# - no other input restriction for this method except that rows are full enough and have reasonably high quality as assessed by data yield
|
||||
|
||||
|
||||
# (5) REMOVE COLS WHERE VARIANCE IS 0
|
||||
if provider["COLS_VAR_THRESHOLD"]:
|
||||
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
|
||||
|
||||
|
@ -77,7 +90,7 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
if esm not in features:
|
||||
features[esm] = esm_cols[esm]
|
||||
|
||||
# (5) DROP HIGHLY CORRELATED FEATURES
|
||||
# (6) DROP HIGHLY CORRELATED FEATURES
|
||||
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
|
||||
if drop_corr_features["COMPUTE"]:
|
||||
|
||||
|
@ -92,7 +105,7 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
|
||||
features.drop(to_drop, axis=1, inplace=True)
|
||||
|
||||
# (6) Remove rows if threshold of NaN values is passed
|
||||
# (7) Remove rows if threshold of NaN values is passed
|
||||
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
|
||||
features.dropna(axis=0, thresh=min_count, inplace=True)
|
||||
|
||||
|
@ -101,16 +114,7 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
sns.heatmap(features.isna(), cbar=False)
|
||||
plt.savefig(f'features_nans_bf_knn.png', bbox_inches='tight')
|
||||
|
||||
## (7) STANDARDIZATION
|
||||
|
||||
if provider["STANDARDIZATION"]:
|
||||
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
||||
|
||||
# (8) KNN IMPUTATION
|
||||
impute_cols = [col for col in features.columns if col not in excluded_columns]
|
||||
features[impute_cols] = impute(features[impute_cols], method="knn")
|
||||
|
||||
# (9) STANDARDIZATION AGAIN
|
||||
## (8) STANDARDIZATION
|
||||
|
||||
if provider["STANDARDIZATION"]:
|
||||
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
||||
|
|
Loading…
Reference in New Issue