Added cf provider for EDA feature processing.
parent
d3a3f01f29
commit
191e53e543
|
@ -93,6 +93,7 @@ packrat/*
|
|||
|
||||
# exclude data from source control by default
|
||||
data/external/*
|
||||
!/data/external/empatica/empatica1/E4 Data.zip
|
||||
!/data/external/.gitkeep
|
||||
!/data/external/stachl_application_genre_catalogue.csv
|
||||
!/data/external/timesegments*.csv
|
||||
|
|
|
@ -509,7 +509,14 @@ EMPATICA_ELECTRODERMAL_ACTIVITY:
|
|||
SRC_SCRIPT: src/features/empatica_electrodermal_activity/dbdp/main.py
|
||||
CF:
|
||||
COMPUTE: True
|
||||
FEATURES: ['mean', 'std', 'q25', 'q75', 'qd'] # To-Do add remaining features from CF helper file.
|
||||
FEATURES: ['mean', 'std', 'q25', 'q75', 'qd', 'deriv', 'power', 'numPeaks', 'ratePeaks', 'powerPeaks',
|
||||
'sumPosDeriv', 'propPosDeriv', 'derivTonic', 'sigTonicDifference', 'freqFeats',
|
||||
'maxPeakAmplitudeChangeBefore', 'maxPeakAmplitudeChangeAfter',
|
||||
'avgPeakAmplitudeChangeBefore', 'avgPeakAmplitudeChangeAfter', 'avgPeakChangeRatio',
|
||||
'maxPeakIncreaseTime', 'maxPeakDecreaseTime', 'maxPeakDuration', 'maxPeakChangeRatio',
|
||||
'avgPeakIncreaseTime', 'avgPeakDecreaseTime', 'avgPeakDuration', 'maxPeakResponseSlopeBefore',
|
||||
'maxPeakResponseSlopeAfter', 'signalOverallChange', 'changeDuration', 'changeRate',
|
||||
'significantIncrease', 'significantDecrease']
|
||||
SRC_SCRIPT: src/features/empatica_electrodermal_activity/cf/main.py
|
||||
|
||||
# See https://www.rapids.science/latest/features/empatica-blood-volume-pulse/
|
||||
|
|
Binary file not shown.
|
@ -1,57 +1,29 @@
|
|||
import pandas as pd
|
||||
from scipy.stats import entropy
|
||||
|
||||
import sys
|
||||
sys.path.insert(1, '/workspaces/rapids/calculatingfeatures')
|
||||
from CalculatingFeatures.helper_functions import convert1DEmpaticaToArray, convertInputInto2d, gsrFeatureNames
|
||||
from CalculatingFeatures.calculate_features import calculateFeatures
|
||||
|
||||
def statsFeatures(eda_data, features, eda_features):
|
||||
col_name = "electrodermal_activity"
|
||||
if "sumeda" in features:
|
||||
eda_features["sumeda"] = eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].sum()
|
||||
if "maxeda" in features:
|
||||
eda_features["maxeda"] = eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].max()
|
||||
if "mineda" in features:
|
||||
eda_features["mineda"] = eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].min()
|
||||
if "avgeda" in features:
|
||||
eda_features["avgeda"] = eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].mean()
|
||||
if "medianeda" in features:
|
||||
eda_features["medianeda"] = eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].median()
|
||||
if "modeeda" in features:
|
||||
eda_features["modeeda"] = eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].agg(lambda x: pd.Series.mode(x)[0])
|
||||
if "stdeda" in features:
|
||||
eda_features["stdeda"] = eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].std()
|
||||
if "diffmaxmodeeda" in features:
|
||||
eda_features["diffmaxmodeeda"] = eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].max() - \
|
||||
eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].agg(lambda x: pd.Series.mode(x)[0])
|
||||
if "diffminmodeeda" in features:
|
||||
eda_features["diffminmodeeda"] = eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].agg(lambda x: pd.Series.mode(x)[0]) - \
|
||||
eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].min()
|
||||
if "entropyeda" in features:
|
||||
eda_features["entropyeda"] = eda_data[["local_segment", col_name]].groupby(["local_segment"])[
|
||||
col_name].agg(entropy)
|
||||
pd.set_option('display.max_columns', None)
|
||||
|
||||
return eda_features
|
||||
|
||||
|
||||
def extractEDAFeaturesFromIntradayData(eda_intraday_data, features, time_segment, filter_data_by_segment):
|
||||
eda_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
|
||||
|
||||
if not eda_intraday_data.empty:
|
||||
eda_intraday_data = filter_data_by_segment(eda_intraday_data, time_segment)
|
||||
|
||||
if not eda_intraday_data.empty:
|
||||
|
||||
eda_intraday_features = pd.DataFrame()
|
||||
|
||||
# get stats of eda
|
||||
eda_intraday_features = statsFeatures(eda_intraday_data, features, eda_intraday_features)
|
||||
# apply a method from calculate features module
|
||||
eda_intraday_features = \
|
||||
eda_intraday_data.groupby('local_segment').apply(\
|
||||
lambda x: calculateFeatures(convertInputInto2d(x['electrodermal_activity'], x.shape[0]), fs=4, featureNames=features))
|
||||
|
||||
eda_intraday_features.reset_index(inplace=True)
|
||||
|
||||
|
@ -63,8 +35,7 @@ def cf_features(sensor_data_files, time_segment, provider, filter_data_by_segmen
|
|||
|
||||
requested_intraday_features = provider["FEATURES"]
|
||||
# name of the features this function can compute
|
||||
base_intraday_features_names = ["maxeda", "mineda", "avgeda", "medianeda", "modeeda", "stdeda", "diffmaxmodeeda",
|
||||
"diffminmodeeda", "entropyeda"]
|
||||
base_intraday_features_names = gsrFeatureNames
|
||||
# the subset of requested features this function can compute
|
||||
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
|
||||
|
||||
|
|
Loading…
Reference in New Issue