Add Barnett's location features
parent
cca1633728
commit
13a6537b14
|
@ -24,6 +24,7 @@ rule all:
|
||||||
call_type = config["COM_CALL"]["CALL_TYPE_TAKEN"],
|
call_type = config["COM_CALL"]["CALL_TYPE_TAKEN"],
|
||||||
segment = config["COM_CALL"]["DAY_SEGMENTS"],
|
segment = config["COM_CALL"]["DAY_SEGMENTS"],
|
||||||
metric = config["COM_CALL"]["METRICS_TAKEN"]),
|
metric = config["COM_CALL"]["METRICS_TAKEN"]),
|
||||||
|
expand("data/processed/{pid}/location_barnett_metrics.csv", pid=config["PIDS"]),
|
||||||
# Reports
|
# Reports
|
||||||
expand("reports/figures/{pid}/{sensor}_heatmap_rows.html", pid=config["PIDS"], sensor=config["SENSORS"]),
|
expand("reports/figures/{pid}/{sensor}_heatmap_rows.html", pid=config["PIDS"], sensor=config["SENSORS"]),
|
||||||
expand("reports/figures/{pid}/compliance_heatmap.html", pid=config["PIDS"], sensor=config["SENSORS"]),
|
expand("reports/figures/{pid}/compliance_heatmap.html", pid=config["PIDS"], sensor=config["SENSORS"]),
|
||||||
|
|
10
config.yaml
10
config.yaml
|
@ -10,13 +10,17 @@ PIDS: [p01, p02]
|
||||||
DAY_SEGMENTS: &day_segments
|
DAY_SEGMENTS: &day_segments
|
||||||
[daily, morning, afternoon, evening, night]
|
[daily, morning, afternoon, evening, night]
|
||||||
|
|
||||||
|
# Global timezone
|
||||||
|
TIMEZONE: &timezone
|
||||||
|
EST
|
||||||
|
|
||||||
# Download data config
|
# Download data config
|
||||||
DOWNLOAD_DATASET:
|
DOWNLOAD_DATASET:
|
||||||
GROUP: AAPECS
|
GROUP: AAPECS
|
||||||
|
|
||||||
# Readable datetime config
|
# Readable datetime config
|
||||||
READABLE_DATETIME:
|
READABLE_DATETIME:
|
||||||
FIXED_TIMEZONE: EST
|
FIXED_TIMEZONE: *timezone
|
||||||
|
|
||||||
# Communication SMS features config
|
# Communication SMS features config
|
||||||
COM_SMS:
|
COM_SMS:
|
||||||
|
@ -37,3 +41,7 @@ PHONE_VALID_SENSED_DAYS:
|
||||||
BIN_SIZE: 5 # (in minutes)
|
BIN_SIZE: 5 # (in minutes)
|
||||||
MIN_VALID_HOURS: 20 # (out of 24)
|
MIN_VALID_HOURS: 20 # (out of 24)
|
||||||
MIN_BINS_PER_HOUR: 8 # (out of 60min/BIN_SIZE bins)
|
MIN_BINS_PER_HOUR: 8 # (out of 60min/BIN_SIZE bins)
|
||||||
|
|
||||||
|
BARNETT_LOCATION:
|
||||||
|
ACCURACY_LIMIT: 51 # filters location coordinates with an accuracy higher than this
|
||||||
|
TIMEZONE: *timezone
|
|
@ -29,3 +29,14 @@ rule battery_deltas:
|
||||||
"data/processed/{pid}/battery_deltas.csv"
|
"data/processed/{pid}/battery_deltas.csv"
|
||||||
script:
|
script:
|
||||||
"../src/features/battery_deltas.R"
|
"../src/features/battery_deltas.R"
|
||||||
|
|
||||||
|
rule location_barnett_metrics:
|
||||||
|
input:
|
||||||
|
"data/raw/{pid}/locations_with_datetime.csv"
|
||||||
|
params:
|
||||||
|
accuracy_limit = config["BARNETT_LOCATION"]["ACCURACY_LIMIT"],
|
||||||
|
timezone = config["BARNETT_LOCATION"]["TIMEZONE"]
|
||||||
|
output:
|
||||||
|
"data/processed/{pid}/location_barnett_metrics.csv"
|
||||||
|
script:
|
||||||
|
"../src/features/location_barnett_metrics.R"
|
|
@ -0,0 +1,13 @@
|
||||||
|
AvgFlightDur <-
|
||||||
|
function(mat){
|
||||||
|
num=0
|
||||||
|
tot=0
|
||||||
|
for(i in 1:nrow(mat)){
|
||||||
|
if(mat[i,1]==1){
|
||||||
|
tot=tot+mat[i,7]-mat[i,4]
|
||||||
|
num=num+1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(num==0){return(0)}
|
||||||
|
return(tot/num)
|
||||||
|
}
|
|
@ -0,0 +1,13 @@
|
||||||
|
AvgFlightLen <-
|
||||||
|
function(mat){
|
||||||
|
num=0
|
||||||
|
tot=0
|
||||||
|
for(i in 1:nrow(mat)){
|
||||||
|
if(mat[i,1]==1){
|
||||||
|
tot=tot+sqrt((mat[i,5]-mat[i,2])^2+(mat[i,6]-mat[i,3])^2)
|
||||||
|
num=num+1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(num==0){return(0)}
|
||||||
|
return(tot/num)
|
||||||
|
}
|
|
@ -0,0 +1,9 @@
|
||||||
|
Collapse2Pause <-
|
||||||
|
function(mat){
|
||||||
|
cent=colMeans(mat[,2:3],na.rm=TRUE)
|
||||||
|
if(!is.na(mat[nrow(mat),7])){
|
||||||
|
return(c(2,cent[1],cent[2],mat[1,4],NA,NA,mat[nrow(mat),7]))
|
||||||
|
}else{
|
||||||
|
return(c(2,cent[1],cent[2],mat[1,4],NA,NA,mat[nrow(mat),4]))
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,42 @@
|
||||||
|
DailyMobilityPlots <-
|
||||||
|
function(mobmat,obj,tz,filename){
|
||||||
|
curdate=strsplit(as.character(as.POSIXct(mobmat[1,4],tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
curtime=strsplit(strsplit(as.character(as.POSIXct(mobmat[1,4],tz=tz,origin="1970-01-01"))," ")[[1]][2],":")
|
||||||
|
subsetinds_v = list()
|
||||||
|
daystr_v = c(curdate)
|
||||||
|
dayind=1
|
||||||
|
subsetinds = c(1)
|
||||||
|
for(i in 2:nrow(mobmat)){
|
||||||
|
nexdate=strsplit(as.character(as.POSIXct(mobmat[i,4],tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
if(nexdate == curdate && i<nrow(mobmat)){
|
||||||
|
subsetinds=c(subsetinds,i)
|
||||||
|
}else{
|
||||||
|
subsetinds_v[[dayind]]=subsetinds
|
||||||
|
dayind=dayind+1
|
||||||
|
if(mobmat[i-1,1]==2 && (mobmat[i-1,7]-mobmat[i-1,4])/(60*60*24)>1){
|
||||||
|
ii=1
|
||||||
|
middate = strsplit(as.character(as.POSIXct(mobmat[i-1,4]+(60*60*24)*ii,tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
while(middate!=nexdate){
|
||||||
|
subsetinds_v[[dayind]]=i-1
|
||||||
|
dayind=dayind+1
|
||||||
|
if(middate!=daystr_v[length(daystr_v)]){
|
||||||
|
daystr_v=c(daystr_v,middate)
|
||||||
|
}
|
||||||
|
ii=ii+1
|
||||||
|
middate = strsplit(as.character(as.POSIXct(mobmat[i-1,4]+(60*60*24)*ii,tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
curdate=nexdate
|
||||||
|
subsetinds=c(i-1,i)
|
||||||
|
if(curdate!=daystr_v[length(daystr_v)] && length(daystr_v)<length(subsetinds_v)){
|
||||||
|
daystr_v=c(daystr_v,curdate)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
plot.flights(mobmat,diminch=4,outfile=paste("FlightsPlot_full_",filename,".pdf",sep=""),xrang=plotlimits(mobmat)$xrang,yrang=plotlimits(mobmat)$yrang)
|
||||||
|
for(i in 1:length(daystr_v)){
|
||||||
|
submat=matrix(mobmat[subsetinds_v[[i]],],ncol=7)
|
||||||
|
plot.flights(submat,diminch=4,outfile=paste("FlightsPlot_",daystr_v[i],"_ZOOMOUT_",filename,".pdf",sep=""),xrang=plotlimits(mobmat)$xrang,yrang=plotlimits(mobmat)$yrang)
|
||||||
|
plot.flights(submat,diminch=4,outfile=paste("FlightsPlot_",daystr_v[i],"_ZOOMIN_",filename,".pdf",sep=""))
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,25 @@
|
||||||
|
DailyRoutineIndex <-
|
||||||
|
function(indday,mobmat,subsetinds_v,subsetdayofweek_v,subsetstarttime_v,tz,CENTERRAD){
|
||||||
|
submat=matrix(mobmat[subsetinds_v[[indday]],],ncol=7)
|
||||||
|
daydist_v = rep(NA,length(subsetinds_v))
|
||||||
|
for(i in 1:length(subsetinds_v)){
|
||||||
|
if(i == indday){next}
|
||||||
|
daydist_v[i]=DayDist(indday,i,mobmat,subsetinds_v,subsetstarttime_v,tz,CENTERRAD)
|
||||||
|
}
|
||||||
|
if(length(which(!is.na(daydist_v)))==0){
|
||||||
|
circscore=NA
|
||||||
|
}else{
|
||||||
|
circscore = mean(daydist_v,na.rm=T)
|
||||||
|
}
|
||||||
|
if(subsetdayofweek_v[indday] == "Saturday" || subsetdayofweek_v[indday] == "Sunday"){
|
||||||
|
IDcompare = c(which(subsetdayofweek_v=="Saturday"),which(subsetdayofweek_v=="Sunday"))
|
||||||
|
}else{
|
||||||
|
IDcompare = c(which(subsetdayofweek_v=="Monday"),which(subsetdayofweek_v=="Tuesday"),which(subsetdayofweek_v=="Wednesday"),which(subsetdayofweek_v=="Thursday"),which(subsetdayofweek_v=="Friday"))
|
||||||
|
}
|
||||||
|
if(length(IDcompare)==0 || length(which(!is.na(daydist_v[IDcompare])))==0){
|
||||||
|
wkscore=NA
|
||||||
|
}else{
|
||||||
|
wkscore = mean(daydist_v[IDcompare],na.rm=T)
|
||||||
|
}
|
||||||
|
return(list('cscore'=circscore,'wscore'=wkscore))
|
||||||
|
}
|
|
@ -0,0 +1,42 @@
|
||||||
|
DayDist <-
|
||||||
|
function(i1,i2,mobmat,subsetinds_v,subsetstarttime_v,tz,CENTERRAD){
|
||||||
|
chkpts=subsetstarttime_v[i1]+seq(from=30*60,by=60*60,length.out=24)
|
||||||
|
chkpts2=subsetstarttime_v[i2]+seq(from=30*60,by=60*60,length.out=24)
|
||||||
|
mat1=matrix(mobmat[subsetinds_v[[i1]],],ncol=7)
|
||||||
|
mat2=matrix(mobmat[subsetinds_v[[i2]],],ncol=7)
|
||||||
|
SamePlace = rep(NA,24)
|
||||||
|
for(i in 1:24){
|
||||||
|
loc1=LocationAt(mat1,chkpts[i])
|
||||||
|
if(is.null(loc1)){
|
||||||
|
next
|
||||||
|
}
|
||||||
|
IDs=c(which(abs(mat2[,4]-chkpts[i])%%(60*60*24)<30*60),which(abs(mat2[,4]-chkpts[i])%%(60*60*24)>(60*60*24)-30*60))
|
||||||
|
if(length(IDs)>0){
|
||||||
|
CanBe0=FALSE
|
||||||
|
for(j in 1:length(IDs)){
|
||||||
|
if(mat2[IDs[j],1]<=3){
|
||||||
|
CanBe0 = TRUE
|
||||||
|
if(sqrt((mat2[IDs[j],2]-loc1$x)^2+(mat2[IDs[j],3]-loc1$y)^2)<CENTERRAD){
|
||||||
|
SamePlace[i]=1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(CanBe0 && is.na(SamePlace[i])){
|
||||||
|
SamePlace[i]=0
|
||||||
|
}
|
||||||
|
}else{
|
||||||
|
for(j in 1:nrow(mat2)){
|
||||||
|
if(!is.na(mat2[j,4])&&!is.na(mat2[j,7])&& mat2[j,4]<chkpts2[i] && mat2[j,7]>chkpts2[i]){
|
||||||
|
if(mat2[j,1]!=4 && sqrt((mat2[j,2]-loc1$x)^2+(mat2[j,3]-loc1$y)^2)<CENTERRAD){
|
||||||
|
SamePlace[i]=1
|
||||||
|
}else{
|
||||||
|
SamePlace[i]=0
|
||||||
|
}
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(length(which(!is.na(SamePlace)))==0){return(NA)}
|
||||||
|
return(mean(SamePlace,na.rm=T))
|
||||||
|
}
|
|
@ -0,0 +1,10 @@
|
||||||
|
DistanceTravelled <-
|
||||||
|
function(mat){
|
||||||
|
dt=0
|
||||||
|
for(i in 1:nrow(mat)){
|
||||||
|
if(mat[i,1]==1){
|
||||||
|
dt=dt+sqrt((mat[i,5]-mat[i,2])^2+(mat[i,6]-mat[i,3])^2)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return(dt)
|
||||||
|
}
|
|
@ -0,0 +1,71 @@
|
||||||
|
ExtractFlights <-
|
||||||
|
function(mat,r,w){
|
||||||
|
out = c()
|
||||||
|
if(!is.matrix(mat)){
|
||||||
|
out=matrix(c(3,mat[1],mat[2],mat[3],NA,NA,NA),nrow=1)
|
||||||
|
colnames(out)=c("code","lon1","lat1","t1","lon2","lat2","t2")
|
||||||
|
return(out)
|
||||||
|
}
|
||||||
|
nextline = rep(NA,6)
|
||||||
|
nextline[1:3]=mat[1,]
|
||||||
|
curind = 1
|
||||||
|
while(TRUE){
|
||||||
|
nexind = curind+1
|
||||||
|
if(nexind==nrow(mat)){
|
||||||
|
nextline[4:6]=mat[nexind,]
|
||||||
|
out=rbind(out,nextline)
|
||||||
|
break
|
||||||
|
}
|
||||||
|
while(TRUE){
|
||||||
|
if(!IsFlight(mat[curind:nexind,],r,w)){
|
||||||
|
break
|
||||||
|
}
|
||||||
|
nexind=nexind+1
|
||||||
|
if(nexind>nrow(mat)){
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(nexind==curind+1 && curind!=nrow(mat)){
|
||||||
|
nextline[3]=mat[nexind,3]
|
||||||
|
mat=mat[-nexind,]
|
||||||
|
}else{
|
||||||
|
nextline[4:6]=mat[nexind-1,]
|
||||||
|
out=rbind(out,nextline)
|
||||||
|
nextline=rep(NA,6)
|
||||||
|
curind=nexind-1
|
||||||
|
nextline[1:3]=mat[curind,]
|
||||||
|
}
|
||||||
|
if(nexind>nrow(mat)){break}
|
||||||
|
}
|
||||||
|
outp=c()
|
||||||
|
if(out[1,3]>min(mat[,3])){
|
||||||
|
outp=rbind(outp,c(2,out[1,1],out[1,2],min(mat[,3]),NA,NA,out[1,3]))
|
||||||
|
if(nrow(out)==1){
|
||||||
|
outp[1,7]=out[1,6]
|
||||||
|
return(outp)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(nrow(out)==1){
|
||||||
|
outp=rbind(outp,c(1,out))
|
||||||
|
return(outp)
|
||||||
|
}
|
||||||
|
for(i in 1:(nrow(out)-1)){
|
||||||
|
outp=rbind(outp,c(1,out[i,]))
|
||||||
|
if(out[i,6]<out[i+1,3]){
|
||||||
|
outp=rbind(outp,c(2,out[i,4],out[i,5],out[i,6],NA,NA,out[i+1,3]))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
# convert flights with distance 0 into pauses
|
||||||
|
IDf=which(outp[,1]==1)
|
||||||
|
IDp=which((outp[IDf,2]-outp[IDf,5])^2+(outp[IDf,3]-outp[IDf,6])^2==0)
|
||||||
|
if(length(IDp)>0){
|
||||||
|
for(i in 1:length(IDp)){
|
||||||
|
outp[IDf[IDp[i]],1]=2
|
||||||
|
outp[IDf[IDp[i]],5]=NA
|
||||||
|
outp[IDf[IDp[i]],6]=NA
|
||||||
|
}
|
||||||
|
}
|
||||||
|
outp=rbind(outp,c(1,out[nrow(out),]))
|
||||||
|
colnames(outp)=c("code","lon1","lat1","t1","lon2","lat2","t2")
|
||||||
|
return(outp)
|
||||||
|
}
|
|
@ -0,0 +1,8 @@
|
||||||
|
ExtractTimePeriod <-
|
||||||
|
function(tstart,tend,out){
|
||||||
|
tstart = as.POSIXct(tstart)
|
||||||
|
tend = as.POSIXct(tend)
|
||||||
|
INDs=intersect(which(apply(out[,c(4,7)],1,function(x) max(x,na.rm=T))>=tstart),which(out[,4]<=tend))
|
||||||
|
suboutmat=out[INDs,]
|
||||||
|
return(suboutmat)
|
||||||
|
}
|
|
@ -0,0 +1,78 @@
|
||||||
|
GPS2MobMat <-
|
||||||
|
function(locations_df,itrvl=10,accuracylim=51,r=NULL,w=NULL,tint_m=NULL,tint_k=NULL){
|
||||||
|
if(is.null(r)){
|
||||||
|
r=sqrt(itrvl)
|
||||||
|
}
|
||||||
|
cat("Read GPS coordinates...\n")
|
||||||
|
mat=as.matrix(locations_df)
|
||||||
|
colnames(mat)=c("timestamp","latitude","longitude","altitude","accuracy")
|
||||||
|
mat=data.frame(mat)
|
||||||
|
mat = mat[order(mat[,1]),]
|
||||||
|
mat=mat[which(mat$accuracy<accuracylim),]
|
||||||
|
if(!is.null(tint_k) && !is.null(tint_m)){
|
||||||
|
t0 = mat$timestamp[1]/1000;
|
||||||
|
mat=mat[which((mat$timestamp/1000-t0)%%(tint_k+tint_m)<tint_k),]
|
||||||
|
}
|
||||||
|
if(is.null(w)){
|
||||||
|
w=mean(mat$accuracy)+itrvl
|
||||||
|
}
|
||||||
|
tstart=mat[1,1]/1000
|
||||||
|
tend=mat[nrow(mat),1]/1000
|
||||||
|
avgmat = matrix(NA,nrow=ceiling((tend-tstart)/itrvl)+2,ncol=4)
|
||||||
|
IDam = 1
|
||||||
|
count = 0
|
||||||
|
nextline=c(1,tstart+itrvl/2,mat[1,2],mat[1,3])
|
||||||
|
numitrvl=1
|
||||||
|
cat("Collapse data within",itrvl,"second intervals...\n")
|
||||||
|
for(i in 2:nrow(mat)){
|
||||||
|
#ProgressBar(nrow(mat)-1,i-1)
|
||||||
|
if(mat[i,1]/1000<tstart+itrvl){
|
||||||
|
nextline[3]=nextline[3]+mat[i,2]
|
||||||
|
nextline[4]=nextline[4]+mat[i,3]
|
||||||
|
numitrvl=numitrvl+1
|
||||||
|
}else{
|
||||||
|
nextline[3]=nextline[3]/numitrvl
|
||||||
|
nextline[4]=nextline[4]/numitrvl
|
||||||
|
#avgmat=rbind(avgmat,nextline)
|
||||||
|
avgmat[IDam,]=nextline
|
||||||
|
count=count+1
|
||||||
|
IDam=IDam+1
|
||||||
|
nummiss=floor((mat[i,1]/1000-(tstart+itrvl))/itrvl)
|
||||||
|
if(nummiss>0){
|
||||||
|
#avgmat = rbind(avgmat,c(4,tstart+itrvl/2,tstart+itrvl*(nummiss+1)+itrvl/2,NA))
|
||||||
|
avgmat[IDam,] = c(4,tstart+itrvl/2,tstart+itrvl*(nummiss+1)+itrvl/2,NA)
|
||||||
|
count=count+1
|
||||||
|
IDam=IDam+1
|
||||||
|
}
|
||||||
|
tstart=tstart+itrvl*(nummiss+1)
|
||||||
|
nextline[1]=1
|
||||||
|
nextline[2]=tstart+itrvl/2
|
||||||
|
nextline[3]=mat[i,2]
|
||||||
|
nextline[4]=mat[i,3]
|
||||||
|
numitrvl=1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
avgmat = avgmat[1:count,]
|
||||||
|
avgmat=cbind(avgmat[,1:4],NA,NA)
|
||||||
|
ID1 = which(avgmat[,1]==1)
|
||||||
|
cat("Convert from Lat/Lon to X/Y...\n")
|
||||||
|
obj=LatLong2XY(avgmat[ID1,3],avgmat[ID1,4])
|
||||||
|
avgmat[ID1,5:6]=cbind(obj$x_v,obj$y_v)
|
||||||
|
outmat=c()
|
||||||
|
curind=1
|
||||||
|
cat("Convert from X/Y to flights/pauses...\n")
|
||||||
|
for(i in 1:nrow(avgmat)){
|
||||||
|
#ProgressBar(nrow(avgmat),i)
|
||||||
|
if(avgmat[i,1]==4){
|
||||||
|
outmat=rbind(outmat,ExtractFlights(avgmat[curind:(i-1),c(5,6,2)],r,w),
|
||||||
|
c(avgmat[i,1],NA,NA,avgmat[i,2],NA,NA,avgmat[i,3]))
|
||||||
|
curind=i+1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(curind<=nrow(avgmat)){
|
||||||
|
outmat=rbind(outmat,ExtractFlights(avgmat[curind:nrow(avgmat),c(4,3,2)],r,w))
|
||||||
|
}
|
||||||
|
rownames(outmat)=NULL
|
||||||
|
colnames(outmat)=c("Code","x0","y0","t0","x1","y1","t1")
|
||||||
|
return(outmat)
|
||||||
|
}
|
|
@ -0,0 +1,127 @@
|
||||||
|
.Random.seed <-
|
||||||
|
c(403L, 532L, 1313347924L, 1871810394L, 1011383459L, 542971573L,
|
||||||
|
-1187392539L, -1841977675L, 1217131604L, -1944452603L, 1098034341L,
|
||||||
|
-804520486L, 840805590L, -1928576924L, -1430251380L, -1139436677L,
|
||||||
|
-2136175183L, 1399219124L, 983913715L, -1958100421L, 819814570L,
|
||||||
|
-101387085L, 1988446300L, 1773434296L, 1028871771L, 1264709853L,
|
||||||
|
1233822260L, -352907293L, -1874091233L, 1376956845L, -1760093132L,
|
||||||
|
-1522448913L, -1077291149L, 21512807L, 1374310655L, -216158555L,
|
||||||
|
1032372804L, -2131685284L, -1247877548L, -195661280L, -1193461112L,
|
||||||
|
406537232L, 1366304989L, -154045753L, -918621168L, 769800744L,
|
||||||
|
1093857437L, 1837589316L, 959891772L, -719808962L, 764802012L,
|
||||||
|
-714351040L, 113797869L, 1889521760L, -1691668836L, 1180793697L,
|
||||||
|
-839820112L, -991859193L, 1862820205L, -695036218L, 1812812603L,
|
||||||
|
575668592L, 1297789652L, 1615165201L, 1872370822L, 1275602355L,
|
||||||
|
238960436L, 217263229L, -1743699477L, -336430177L, 1946276898L,
|
||||||
|
-51047926L, 335686119L, 1868745363L, -1879114386L, -239507944L,
|
||||||
|
-123202664L, -1086065649L, 520396406L, 85978089L, -1175046236L,
|
||||||
|
1884875031L, -1192695774L, 1266617047L, 1536889729L, -764534926L,
|
||||||
|
-921373109L, 1047329928L, -2075286222L, -322845886L, 1550309448L,
|
||||||
|
-1443985874L, 426960922L, 329268207L, -1292289121L, -733595876L,
|
||||||
|
-47705416L, 1538462075L, 461864706L, 901229296L, -949594389L,
|
||||||
|
-1372822103L, 1078727042L, -852223136L, 2064479292L, 469194534L,
|
||||||
|
-1692101348L, -1326676204L, -1167590146L, 1447819969L, 1740561448L,
|
||||||
|
310324356L, 1159333394L, -1649710625L, 1309005753L, 1620056043L,
|
||||||
|
-276036353L, -1947036044L, -167957757L, -1073647714L, -2116038119L,
|
||||||
|
-805885834L, -744848943L, 366767435L, -352340781L, 1599535855L,
|
||||||
|
514109103L, 323296404L, -335287805L, -224216873L, -161023865L,
|
||||||
|
786897141L, -130409155L, 1160446270L, 556864385L, 1119301421L,
|
||||||
|
1686985943L, -258984081L, -1980102978L, -467100411L, -209450057L,
|
||||||
|
1139741027L, 1425551935L, -172315197L, 1696991401L, 1544576071L,
|
||||||
|
-1235589375L, -651734299L, 1211549043L, -1804251286L, -1833360148L,
|
||||||
|
-984096802L, -1628949810L, 8538312L, 432153794L, 305942613L,
|
||||||
|
1808431964L, 853733524L, -1605692859L, -385367678L, 2141939616L,
|
||||||
|
889773407L, -1560609642L, 670905649L, 334411293L, 1986402167L,
|
||||||
|
2033870206L, 2134300301L, -2064582382L, -626346565L, 1439629109L,
|
||||||
|
-1488737583L, 226757300L, -1344407788L, -276329690L, -1609546781L,
|
||||||
|
-1931070875L, -1080666228L, -1697864201L, -740486497L, 957639L,
|
||||||
|
835570953L, 84725091L, -1091466133L, 91751578L, -1466541146L,
|
||||||
|
28398023L, -279877742L, -1912375291L, 2143554198L, 1895134001L,
|
||||||
|
859721695L, -1642408008L, 148459404L, 1279722084L, 11639361L,
|
||||||
|
-1186157268L, -2049545183L, 1929906479L, 479992801L, -1233036366L,
|
||||||
|
1132495183L, -1717869394L, 1192119769L, 701016453L, -353462329L,
|
||||||
|
1849679222L, -88610627L, 1268564785L, 1780888828L, 2125555696L,
|
||||||
|
-479454132L, 381014479L, 1731827411L, -1497293413L, 1765610629L,
|
||||||
|
-257146116L, -1672646416L, 279572202L, 306061705L, 363542578L,
|
||||||
|
2043684836L, -2087600401L, -18100679L, 130429363L, -206253433L,
|
||||||
|
-1877476275L, -1110886980L, 370895704L, 1937535833L, -458899417L,
|
||||||
|
1933513839L, 1851745682L, -1759551850L, -1424097819L, -1409590771L,
|
||||||
|
-1445940234L, 1476939385L, -75749314L, -512187962L, -246840201L,
|
||||||
|
-1402437621L, -712433900L, 748518695L, -1206528520L, 1269096214L,
|
||||||
|
-1424522002L, 306993153L, -1748232238L, -1953861210L, 1854731988L,
|
||||||
|
1949973704L, 2113990654L, -1035297672L, -982113110L, 1947747532L,
|
||||||
|
-445683723L, -1422336527L, 342451150L, -507937006L, 835723234L,
|
||||||
|
-1305861749L, -2076961L, 1963086836L, 1777323305L, -603589976L,
|
||||||
|
1080406293L, -1525958639L, -2102281422L, -1949428444L, 534768422L,
|
||||||
|
-956054234L, 1217023252L, 1166857033L, 623089757L, 2063298512L,
|
||||||
|
-620443337L, 57617896L, -1412861617L, -2143192173L, 1221810917L,
|
||||||
|
-1831504418L, 433245121L, -1494205908L, -1595423097L, 618652748L,
|
||||||
|
1823284534L, -1975790459L, 944624583L, -1978478274L, -253539083L,
|
||||||
|
-462197135L, -1114266908L, -922829841L, 1205417697L, 646277154L,
|
||||||
|
1729713966L, 355692987L, 132643960L, 1888913730L, 2132596438L,
|
||||||
|
795730174L, 2087034140L, -791602328L, 835529196L, 1599434274L,
|
||||||
|
-561592179L, 1725668202L, 1560611807L, -2012209521L, -1629575171L,
|
||||||
|
-458089249L, -23267003L, 964024514L, -1272882513L, 1236391732L,
|
||||||
|
1392262569L, 1719968820L, -816708679L, -253696196L, -1999483729L,
|
||||||
|
-879828673L, 774026514L, 2032852514L, 265849025L, -1032488828L,
|
||||||
|
888611850L, -557908513L, 242929886L, -853928924L, 1795396519L,
|
||||||
|
-645381594L, -1265672393L, -48545467L, 1751878167L, -1176229327L,
|
||||||
|
1712417278L, -192564525L, 1961264818L, -251913527L, -17410384L,
|
||||||
|
-482501633L, 735216203L, 1651195944L, 1487942672L, -1690451385L,
|
||||||
|
981921524L, 1875073328L, -1902904317L, -1276058861L, 124430661L,
|
||||||
|
1201133121L, -36499579L, -109105456L, 392425457L, 897127536L,
|
||||||
|
-1279061377L, -1363233155L, -2007340730L, -905842946L, -887240161L,
|
||||||
|
1479417822L, 1500778929L, 1466912977L, 812638707L, -2057320565L,
|
||||||
|
2068831285L, -1049121129L, 1998379119L, 207096865L, 447981423L,
|
||||||
|
-937392999L, 1943901795L, -107458212L, -138672881L, -1023681436L,
|
||||||
|
-1446415999L, 66593794L, -274569338L, -2142851735L, 1962274868L,
|
||||||
|
-260423225L, 848068533L, -1542630154L, -868285626L, 638924723L,
|
||||||
|
-854628924L, 1125942533L, -649860011L, -973015008L, 590638971L,
|
||||||
|
-158072121L, 294744765L, 4475861L, -1168788891L, 1088711993L,
|
||||||
|
1866282938L, -1972286214L, 730559500L, 476356180L, -643462965L,
|
||||||
|
1145283670L, -1789320019L, 1394756070L, 1360865552L, 442757964L,
|
||||||
|
482432621L, 866748070L, 1098009718L, 1829802919L, 1430291759L,
|
||||||
|
-1092585109L, 1585044133L, -2048575248L, -1733890113L, 1959791537L,
|
||||||
|
-1554152768L, -1232796444L, 55241962L, 618750999L, -1604134765L,
|
||||||
|
-334997900L, -329001808L, -131647435L, -1173666250L, -390668357L,
|
||||||
|
-1435906115L, -1800810938L, 515985026L, 2135250434L, -1131126307L,
|
||||||
|
1500178268L, -1419074199L, -2097621264L, -1595537173L, -119195356L,
|
||||||
|
-933183808L, 1258750368L, -1576216741L, -2109603222L, -114161474L,
|
||||||
|
407866045L, 143180735L, -1955314723L, -563023849L, 943100547L,
|
||||||
|
-525904233L, 1203626173L, 298193165L, 243465545L, 1781374980L,
|
||||||
|
193452035L, 1680045763L, -1527622795L, -1795637087L, -741238918L,
|
||||||
|
-1464754509L, 393604555L, 815707509L, 394882594L, -1224578437L,
|
||||||
|
-1812068853L, -326236336L, 884326570L, -242406610L, -796869644L,
|
||||||
|
-2009573940L, -1929478690L, -24546421L, 1645754250L, 1758904072L,
|
||||||
|
-625256378L, 1484952523L, 51300200L, 2097643165L, -644469584L,
|
||||||
|
1463679013L, 1230080733L, -225241322L, 1340024590L, -906536550L,
|
||||||
|
267804114L, -2053227290L, 1280884626L, -1509434552L, 715641015L,
|
||||||
|
-1230219346L, -2080901838L, 1526982232L, -961182793L, 1354426796L,
|
||||||
|
-1819048544L, 402152231L, 1364528591L, 1804221413L, -391129488L,
|
||||||
|
1767561636L, -327907125L, 1136370555L, -1993797245L, 575464991L,
|
||||||
|
-1344405105L, 596664572L, -179105035L, 1371915085L, 1160648991L,
|
||||||
|
-1278296665L, 1038267328L, 2124553203L, 1844569236L, -1935370541L,
|
||||||
|
768719328L, -862231222L, 2006606051L, 1600764073L, -160569050L,
|
||||||
|
-641177427L, 1450448111L, 964835699L, -168653407L, -235867833L,
|
||||||
|
-2140989170L, -979222517L, 1847316285L, -1375890997L, -619527280L,
|
||||||
|
-268442869L, -555700851L, -947320017L, -117270963L, 905734377L,
|
||||||
|
2040206464L, 189927684L, 1946772916L, 2063644288L, 1236821922L,
|
||||||
|
356581126L, 961632549L, 1477105165L, 2021674991L, -201833932L,
|
||||||
|
-1674640108L, -374676286L, 900859425L, -1120503690L, 858929571L,
|
||||||
|
580402156L, 1850701053L, 482648387L, -1887578264L, -1272735428L,
|
||||||
|
1847053487L, 1682931620L, 91199275L, -698201210L, 1455847850L,
|
||||||
|
1617511191L, -2010753409L, -138736895L, 1011671890L, 1358821823L,
|
||||||
|
535141707L, 902747138L, -1671815282L, 1725905177L, 942921105L,
|
||||||
|
-1944705495L, -1123750932L, -1814790220L, 811191462L, 1136178868L,
|
||||||
|
2108013845L, 2036310821L, 1647796877L, 737275416L, 448693843L,
|
||||||
|
551943530L, -295170845L, -1213943211L, 1569163441L, -1826759528L,
|
||||||
|
115090139L, 388763308L, -131506358L, -1491736754L, -1496442366L,
|
||||||
|
1060591815L, -1737500855L, -772006308L, -458085092L, 1697885227L,
|
||||||
|
-617111090L, -1379906226L, -1815127813L, 1111219806L, -1255421555L,
|
||||||
|
999218138L, 1977126068L, 781672536L, 1205250271L, 1414748230L,
|
||||||
|
1331187882L, 1481475622L, 892770178L, -1889921295L, -1870961089L,
|
||||||
|
-2137441515L, 1504371917L, 1834797012L, 1264278039L, 1648781970L,
|
||||||
|
-2140624793L, 53578265L, 1201061792L, 1516041549L, -216621021L,
|
||||||
|
1529156071L, 1880973897L, 993084056L, -2099800818L, -786845703L,
|
||||||
|
-1773470008L, -1939021033L, 1778465361L, 532321917L, 1286568102L
|
||||||
|
)
|
|
@ -0,0 +1,151 @@
|
||||||
|
GetMobilityFeaturesMat <-
|
||||||
|
function(mobmat,obj,mobmatmiss,tz,CENTERRAD,ITRVL){
|
||||||
|
#### Get significant locations
|
||||||
|
slout=SigLocs(mobmat,obj,CENTERRAD,tz=tz)
|
||||||
|
IDhome=which(slout[,4]==1)
|
||||||
|
if(length(IDhome)==0){IDhome=1}
|
||||||
|
homex=slout[IDhome,1];homey=slout[IDhome,2]
|
||||||
|
#### Partion mobmat data into daily subsets: create subsetinds_v and daystr_v.
|
||||||
|
curdate=strsplit(as.character(as.POSIXct(mobmat[1,4],tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
curtime=strsplit(strsplit(as.character(as.POSIXct(mobmat[1,4],tz=tz,origin="1970-01-01"))," ")[[1]][2],":")
|
||||||
|
subsetinds_v = list()
|
||||||
|
subsetdayofweek_v = c()
|
||||||
|
subsetstarttime_v = c()
|
||||||
|
daystr_v = c(curdate)
|
||||||
|
dayind=1
|
||||||
|
subsetinds = c(1)
|
||||||
|
if(nrow(mobmat)<2){
|
||||||
|
outmat=NULL
|
||||||
|
return(list(outmat,slout))
|
||||||
|
}
|
||||||
|
for(i in 2:nrow(mobmat)){
|
||||||
|
nexdate=strsplit(as.character(as.POSIXct(mobmat[i,4],tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
if(nexdate == curdate && i<nrow(mobmat)){
|
||||||
|
subsetinds=c(subsetinds,i)
|
||||||
|
}else{
|
||||||
|
subsetinds_v[[dayind]]=subsetinds
|
||||||
|
subsetdayofweek_v = c(subsetdayofweek_v,weekdays(as.Date(curdate)))
|
||||||
|
subsetstarttime_v = c(subsetstarttime_v,as.numeric(as.POSIXct(paste(curdate," 00:00:00",sep=""),tz=tz,origin="1970-01-01")))
|
||||||
|
dayind=dayind+1
|
||||||
|
if(mobmat[i-1,1]==2 && (mobmat[i-1,7]-mobmat[i-1,4])/(60*60*24)>1){
|
||||||
|
ii=1
|
||||||
|
middate = strsplit(as.character(as.POSIXct(mobmat[i-1,4]+(60*60*24)*ii,tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
while(middate!=nexdate){
|
||||||
|
subsetdayofweek_v = c(subsetdayofweek_v,weekdays(as.Date(middate)))
|
||||||
|
subsetstarttime_v = c(subsetstarttime_v,as.numeric(as.POSIXct(paste(middate," 00:00:00",sep=""),tz=tz,origin="1970-01-01")))
|
||||||
|
subsetinds_v[[dayind]]=i-1
|
||||||
|
dayind=dayind+1
|
||||||
|
if(middate!=daystr_v[length(daystr_v)]){
|
||||||
|
daystr_v=c(daystr_v,middate)
|
||||||
|
}
|
||||||
|
ii=ii+1
|
||||||
|
middate = strsplit(as.character(as.POSIXct(mobmat[i-1,4]+(60*60*24)*ii,tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
curdate=nexdate
|
||||||
|
subsetinds=c(i-1,i)
|
||||||
|
if(curdate!=daystr_v[length(daystr_v)]&& !(length(daystr_v)==length(subsetinds_v) && nrow(mobmat)==i)){
|
||||||
|
daystr_v=c(daystr_v,curdate)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#### Partion mobmatmiss data into daily subsets: create subsetinds_v and daystr_v.
|
||||||
|
curdate=strsplit(as.character(as.POSIXct(mobmatmiss[1,4],tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
curtime=strsplit(strsplit(as.character(as.POSIXct(mobmatmiss[1,4],tz=tz,origin="1970-01-01"))," ")[[1]][2],":")
|
||||||
|
subsetindsmiss_v = list()
|
||||||
|
daystrmiss_v=c(curdate)
|
||||||
|
dayind=1
|
||||||
|
subsetinds = c(1)
|
||||||
|
for(i in 2:nrow(mobmatmiss)){
|
||||||
|
nexdate=strsplit(as.character(as.POSIXct(mobmatmiss[i,4],tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
if(nexdate == curdate && i<nrow(mobmatmiss)){
|
||||||
|
subsetinds=c(subsetinds,i)
|
||||||
|
}else{
|
||||||
|
curdate=nexdate
|
||||||
|
subsetindsmiss_v[[dayind]]=subsetinds
|
||||||
|
if(curdate!=daystrmiss_v[length(daystrmiss_v)] && !(length(daystrmiss_v)==length(subsetindsmiss_v) && nrow(mobmatmiss)==i)){
|
||||||
|
daystrmiss_v=c(daystrmiss_v,curdate)
|
||||||
|
}
|
||||||
|
subsetinds=c(i-1,i)
|
||||||
|
dayind=dayind+1
|
||||||
|
if(mobmatmiss[i-1,1]==2 && (mobmatmiss[i-1,7]-mobmatmiss[i-1,4])/(60*60*24)>1){
|
||||||
|
ii=1
|
||||||
|
middate = strsplit(as.character(as.POSIXct(mobmatmiss[i-1,4]+(60*60*24)*ii,tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
while(middate!=nexdate){
|
||||||
|
subsetindsmiss_v[[dayind]]=i-1
|
||||||
|
dayind=dayind+1
|
||||||
|
if(middate!=daystrmiss_v[length(daystrmiss_v)]){
|
||||||
|
daystrmiss_v=c(daystrmiss_v,middate)
|
||||||
|
}
|
||||||
|
ii=ii+1
|
||||||
|
middate = strsplit(as.character(as.POSIXct(mobmatmiss[i-1,4]+(60*60*24)*ii,tz=tz,origin="1970-01-01"))," ")[[1]][1]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
##### intersect mobmat and mobmatmiss to ignore missing data
|
||||||
|
IDkeep=c()
|
||||||
|
IDkeepmiss=c()
|
||||||
|
for(i in 1:length(daystr_v)){
|
||||||
|
for(j in 1:length(daystrmiss_v)){
|
||||||
|
if(daystr_v[i]==daystrmiss_v[j]){
|
||||||
|
IDkeep=c(IDkeep,i)
|
||||||
|
IDkeepmiss=c(IDkeepmiss,j)
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(length(IDkeep)==0){
|
||||||
|
outmat=NULL
|
||||||
|
return(list(outmat,slout))
|
||||||
|
}
|
||||||
|
daystr_v=daystr_v[IDkeep]
|
||||||
|
subsetinds_v=subsetinds_v[IDkeep]
|
||||||
|
subsetdayofweek_v=subsetdayofweek_v[IDkeep]
|
||||||
|
subsetstarttime_v=subsetstarttime_v[IDkeep]
|
||||||
|
daystrmiss_v=daystrmiss_v[IDkeepmiss]
|
||||||
|
subsetindsmiss_v=subsetindsmiss_v[IDkeepmiss]
|
||||||
|
##### Compute mobility features for each day
|
||||||
|
Nfeatures=15
|
||||||
|
outmat=matrix(,nrow=length(daystr_v),ncol=Nfeatures)
|
||||||
|
colnames(outmat)=c("Hometime","DistTravelled","RoG","MaxDiam","MaxHomeDist","SigLocsVisited","AvgFlightLen","StdFlightLen","AvgFlightDur","StdFlightDur","ProbPause","SigLocEntropy","MinsMissing","CircdnRtn","WkEndDayRtn")
|
||||||
|
rownames(outmat)=daystr_v
|
||||||
|
for(i in 1:length(daystr_v)){
|
||||||
|
if(length(subsetinds_v[[i]])==0){next}
|
||||||
|
submat=matrix(mobmat[subsetinds_v[[i]],],ncol=7)
|
||||||
|
if(submat[1,1]==2 && submat[1,4]<subsetstarttime_v[[i]]){
|
||||||
|
submat[1,4]=subsetstarttime_v[[i]]
|
||||||
|
}
|
||||||
|
if(submat[nrow(submat),1]==2 && submat[nrow(submat),7]>subsetstarttime_v[[i]]+60*60*24){
|
||||||
|
submat[nrow(submat),7]=subsetstarttime_v[[i]]+60*60*24
|
||||||
|
}
|
||||||
|
submatmiss=matrix(mobmatmiss[subsetindsmiss_v[[i]],],ncol=7)
|
||||||
|
if(submatmiss[1,1]==4 && submatmiss[1,4]<subsetstarttime_v[[i]]){
|
||||||
|
submatmiss[1,4]=subsetstarttime_v[[i]]
|
||||||
|
}
|
||||||
|
if(submatmiss[nrow(submatmiss),1]==4 && submatmiss[nrow(submatmiss),7]>subsetstarttime_v[[i]]+60*60*24){
|
||||||
|
submatmiss[nrow(submatmiss),7]=subsetstarttime_v[[i]]+60*60*24
|
||||||
|
}
|
||||||
|
if(nrow(submat)==0 || length(which(slout$home==1))==0){
|
||||||
|
outmat[i,]=c(rep(NA,12),1440,rep(NA,2))
|
||||||
|
}else{
|
||||||
|
outmat[i,1]=Hometime(submat,slout,CENTERRAD=200)
|
||||||
|
outmat[i,2]=DistanceTravelled(submat)
|
||||||
|
outmat[i,3]=RadiusOfGyration(submat,ITRVL)
|
||||||
|
outmat[i,4]=MaxDiam(submat)
|
||||||
|
outmat[i,5]=MaxHomeDist(submat,homex,homey)
|
||||||
|
outmat[i,6]=SigLocsVisited(submat,slout,CENTERRAD)
|
||||||
|
outmat[i,7]=AvgFlightLen(submat)
|
||||||
|
outmat[i,8]=StdFlightLen(submat)
|
||||||
|
outmat[i,9]=AvgFlightDur(submat)
|
||||||
|
outmat[i,10]=StdFlightDur(submat)
|
||||||
|
outmat[i,11]=ProbPause(submat)
|
||||||
|
outmat[i,12]=SigLocEntropy(submat,slout,CENTERRAD)
|
||||||
|
outmat[i,13]=MinsMissing(submatmiss)
|
||||||
|
DRIout=DailyRoutineIndex(i,mobmat,subsetinds_v,subsetdayofweek_v,subsetstarttime_v,tz,CENTERRAD)
|
||||||
|
outmat[i,14]=DRIout$cscore
|
||||||
|
outmat[i,15]=DRIout$wscore
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return(list(outmat,slout))
|
||||||
|
}
|
|
@ -0,0 +1,134 @@
|
||||||
|
GuessPause <-
|
||||||
|
function(mat,mindur=300,r=75){
|
||||||
|
cat("Inferring pauses...\n")
|
||||||
|
flatmat=c()
|
||||||
|
collapse=FALSE
|
||||||
|
inds=1
|
||||||
|
incr=1
|
||||||
|
tcur=mat[inds,4]
|
||||||
|
while(TRUE){
|
||||||
|
if(!is.na(mat[inds+incr,7])){
|
||||||
|
tnex=mat[inds+incr,7]
|
||||||
|
}else{
|
||||||
|
tnex=mat[inds+incr,4]
|
||||||
|
}
|
||||||
|
if(tnex-tcur>=mindur){
|
||||||
|
if(mat[inds+incr,1]==1){
|
||||||
|
maxr=MaxRadius(rbind(mat[inds:(inds+incr),2:3],mat[inds:(inds+incr),5:6]))
|
||||||
|
}else{
|
||||||
|
maxr=MaxRadius(mat[inds:(inds+incr),2:3])
|
||||||
|
}
|
||||||
|
if(maxr>r && !collapse){
|
||||||
|
inds=inds+1
|
||||||
|
tcur=mat[inds,1]
|
||||||
|
incr=0
|
||||||
|
}
|
||||||
|
if(maxr>r && collapse){
|
||||||
|
if(mat[inds+incr-1,1]==4){
|
||||||
|
if(inds<inds+incr-2){
|
||||||
|
flatmat=rbind(flatmat,c(inds,inds+incr-2))
|
||||||
|
}
|
||||||
|
}else{
|
||||||
|
flatmat=rbind(flatmat,c(inds,inds+incr-1))
|
||||||
|
}
|
||||||
|
inds=inds+incr
|
||||||
|
tcur=mat[inds,1]
|
||||||
|
incr=0
|
||||||
|
collapse=FALSE
|
||||||
|
}
|
||||||
|
if(maxr<=r){
|
||||||
|
collapse=TRUE
|
||||||
|
}
|
||||||
|
}
|
||||||
|
incr=incr+1
|
||||||
|
if(inds+incr>nrow(mat)){
|
||||||
|
if(maxr<=r && tnex-tcur>=mindur){
|
||||||
|
flatmat=rbind(flatmat,c(inds,inds+incr-1))
|
||||||
|
}
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(nrow(flatmat)==0){
|
||||||
|
return(mat)
|
||||||
|
}else{
|
||||||
|
outmat=c()
|
||||||
|
if(flatmat[1,1]>1){
|
||||||
|
outmat=mat[1:(flatmat[1,1]-1),]
|
||||||
|
}
|
||||||
|
for(i in 1:nrow(flatmat)){
|
||||||
|
#ProgressBar(nrow(flatmat),i)
|
||||||
|
outmat=rbind(outmat,Collapse2Pause(mat[flatmat[i,1]:flatmat[i,2],]))
|
||||||
|
if(i<nrow(flatmat) && flatmat[i,2]<flatmat[i+1,1]-1){
|
||||||
|
outmat=rbind(outmat,mat[(flatmat[i,2]+1):(flatmat[i+1,1]-1),])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(flatmat[nrow(flatmat),2]<nrow(mat)){
|
||||||
|
outmat=rbind(outmat,mat[(flatmat[nrow(flatmat),2]+1):nrow(mat),])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(nrow(outmat)==1){
|
||||||
|
rownames(outmat)=NULL
|
||||||
|
colnames(outmat)=c("Code","x0","y0","t0","x1","y1","t1")
|
||||||
|
return(outmat)
|
||||||
|
}
|
||||||
|
# Group together adjacent pauses, averaging their location
|
||||||
|
flatmat2=c()
|
||||||
|
outmat2=c()
|
||||||
|
collapse=FALSE
|
||||||
|
for(i in 2:nrow(outmat)){
|
||||||
|
if(outmat[i,1]!=2 && !collapse){
|
||||||
|
next
|
||||||
|
}else if(outmat[i,1]!=2 && collapse){
|
||||||
|
collapse=FALSE
|
||||||
|
flatmat2=rbind(flatmat2,c(cstart,i-1))
|
||||||
|
}else if(outmat[i,1]==2 && outmat[i-1,1]==2 && !collapse){
|
||||||
|
cstart=i-1
|
||||||
|
collapse=TRUE
|
||||||
|
}else if(outmat[i,1]==2 && collapse){
|
||||||
|
next
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(collapse && outmat[nrow(outmat),1]==2){
|
||||||
|
flatmat2=rbind(flatmat2,c(cstart,nrow(outmat)))
|
||||||
|
}
|
||||||
|
if(is.null(flatmat2)){
|
||||||
|
outmat2=outmat
|
||||||
|
}else{
|
||||||
|
flatmat2=matrix(flatmat2,ncol=2)
|
||||||
|
outmat2=c()
|
||||||
|
if(flatmat2[1,1]>1){
|
||||||
|
outmat2=outmat[1:(flatmat2[1,1]-1),]
|
||||||
|
}
|
||||||
|
for(i in 1:nrow(flatmat2)){
|
||||||
|
outmat2=rbind(outmat2,Collapse2Pause(outmat[flatmat2[i,1]:flatmat2[i,2],]))
|
||||||
|
if(i<nrow(flatmat2) && flatmat2[i,2] < flatmat2[i+1,1]-1){
|
||||||
|
outmat2=rbind(outmat2,outmat[(flatmat2[i,2]+1):(flatmat2[i+1,1]-1),])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(flatmat2[nrow(flatmat2),2]<nrow(outmat)){
|
||||||
|
outmat2=rbind(outmat2,outmat[(flatmat2[nrow(flatmat2),2]+1):nrow(outmat),])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
# Set flight endpoints equal to pause endpoints
|
||||||
|
if(outmat2[1,1]==1 && outmat2[2,1]==2){
|
||||||
|
outmat2[1,5]=outmat2[2,2]
|
||||||
|
outmat2[1,6]=outmat2[2,3]
|
||||||
|
}
|
||||||
|
for(i in 2:(nrow(outmat2)-1)){
|
||||||
|
if(outmat2[i,1]==1 && outmat2[i-1,1]==2){
|
||||||
|
outmat2[i,2]=outmat2[i-1,2]
|
||||||
|
outmat2[i,3]=outmat2[i-1,3]
|
||||||
|
}
|
||||||
|
if(outmat2[i,1]==1 && outmat2[i+1,1]==2){
|
||||||
|
outmat2[i,5]=outmat2[i+1,2]
|
||||||
|
outmat2[i,6]=outmat2[i+1,3]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(outmat2[nrow(outmat2)-1,1]==2 && outmat2[nrow(outmat2),1]==1){
|
||||||
|
outmat2[nrow(outmat2),2]=outmat2[nrow(outmat2)-1,2]
|
||||||
|
outmat2[nrow(outmat2),3]=outmat2[nrow(outmat2)-1,3]
|
||||||
|
}
|
||||||
|
rownames(outmat2)=NULL
|
||||||
|
colnames(outmat2)=c("Code","x0","y0","t0","x1","y1","t1")
|
||||||
|
return(outmat2)
|
||||||
|
}
|
|
@ -0,0 +1,13 @@
|
||||||
|
Hometime <-
|
||||||
|
function(mat,slout,CENTERRAD){
|
||||||
|
IDhome=which(slout$home==1)
|
||||||
|
xcenter=slout[IDhome,1]
|
||||||
|
ycenter=slout[IDhome,2]
|
||||||
|
tottime=0
|
||||||
|
for(i in 1:nrow(mat)){
|
||||||
|
if(mat[i,1]==2 && sqrt((mat[i,2]-xcenter)^2+(mat[i,3]-ycenter)^2)<CENTERRAD){ ### error missing value where true/false needed
|
||||||
|
tottime=tottime+mat[i,7]-mat[i,4]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return(tottime/60)
|
||||||
|
}
|
|
@ -0,0 +1,58 @@
|
||||||
|
InitializeParams <-
|
||||||
|
function(out){
|
||||||
|
ID1=which(out[,1]==1)
|
||||||
|
ID2=which(out[,1]==2)
|
||||||
|
ID3=which(out[,1]==3)
|
||||||
|
ID4=which(out[,1]==4)
|
||||||
|
|
||||||
|
# probability of a pause after a flight
|
||||||
|
ID1p1=ID1+1
|
||||||
|
if(length(ID1)>0 && ID1[length(ID1)]==nrow(out)){
|
||||||
|
ID1p1=ID1p1[-length(ID1p1)]
|
||||||
|
}
|
||||||
|
allts=apply(out,1,function(xx) mean(xx[c(4,7)]))
|
||||||
|
allxs=out[,2]
|
||||||
|
allys=out[,3]
|
||||||
|
ind11=ID1p1[which(out[ID1p1,1]==1)]
|
||||||
|
ind12=ID1p1[which(out[ID1p1,1]==2)]
|
||||||
|
l1=length(ind11)
|
||||||
|
l2=length(ind12)
|
||||||
|
if(l1+l2>0){
|
||||||
|
phatall=l2/(l1+l2)
|
||||||
|
}
|
||||||
|
if(l1+l2==0){phatall=length(ID2)/(length(ID1)+length(ID2))}
|
||||||
|
#flight distances
|
||||||
|
fd=apply(out[ID1,],1,function(xx) sqrt((xx[2]-xx[5])^2+(xx[3]-xx[6])^2))
|
||||||
|
|
||||||
|
# flight times: ft
|
||||||
|
ft=apply(out[ID1,],1,function(xx) (xx[7]-xx[4]))
|
||||||
|
fxs=out[ID1,2]
|
||||||
|
fys=out[ID1,3]
|
||||||
|
# flight angles range [0,2pi]: fa
|
||||||
|
#fa=apply(out[ID1,],1,function(xx) atan((xx[6]-xx[3])/(xx[5]-xx[2]))-((sign(xx[6]-xx[3])-1)/2)*pi)
|
||||||
|
fa=rep(0,length(ID1))
|
||||||
|
yvals=out[ID1,6]-out[ID1,3]
|
||||||
|
xvals=out[ID1,5]-out[ID1,2]
|
||||||
|
IDyg0=which(yvals>=0)
|
||||||
|
IDxg0=which(xvals>=0)
|
||||||
|
IDyl0=which(yvals<0)
|
||||||
|
IDxl0=which(xvals<0)
|
||||||
|
IDgg=intersect(IDyg0,IDxg0)
|
||||||
|
IDlg=intersect(IDyg0,IDxl0)
|
||||||
|
IDgl=intersect(IDyl0,IDxg0)
|
||||||
|
IDll=intersect(IDyl0,IDxl0)
|
||||||
|
fa[IDgg]=atan(yvals[IDgg]/xvals[IDgg])
|
||||||
|
fa[IDgl]=atan(yvals[IDgl]/xvals[IDgl])+2*pi
|
||||||
|
fa[IDlg]=atan(yvals[IDlg]/xvals[IDlg])+pi
|
||||||
|
fa[IDll]=atan(yvals[IDll]/xvals[IDll])+pi
|
||||||
|
# flight time stamps: fts
|
||||||
|
fts=out[ID1,4]
|
||||||
|
|
||||||
|
# pause times
|
||||||
|
pt=apply(matrix(out[ID2,],ncol=7),1,function(xx) xx[7]-xx[4])
|
||||||
|
pxs=out[ID2,2]
|
||||||
|
pys=out[ID2,3]
|
||||||
|
#pause time stamp: pts
|
||||||
|
pts=out[ID2,4]
|
||||||
|
return(list(ID1=ID1,ID2=ID2,ID3=ID3,ID4=ID4,ID1p1=ID1p1,allts=allts,ind11=ind11,ind12=ind12,phatall=phatall,fd=fd,ft=ft,fa=fa,fts=fts,pt=pt,pts=pts,fxs=fxs,fys=fys,pxs=pxs,pys=pys,allxs=allxs,allys=allys))
|
||||||
|
}
|
|
@ -0,0 +1,33 @@
|
||||||
|
IsFlight <-
|
||||||
|
function(mat,r,w){
|
||||||
|
num=nrow(mat)
|
||||||
|
if(sqrt((mat[1,1]-mat[num,1])^2+(mat[1,2]-mat[num,2])^2)<r){
|
||||||
|
return(FALSE)
|
||||||
|
}
|
||||||
|
if(min(sqrt((mat[2:num,1]-mat[1:(num-1),1])^2+(mat[2:num,2]-mat[1:(num-1),2])^2))<r){
|
||||||
|
return(FALSE)
|
||||||
|
}
|
||||||
|
if(num==2){
|
||||||
|
return(TRUE)
|
||||||
|
}
|
||||||
|
if(mat[1,1]==mat[num,1]){
|
||||||
|
if(max(abs(mat[2:(num-1),1]))>w){
|
||||||
|
return(FALSE)
|
||||||
|
}else{
|
||||||
|
return(TRUE)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(mat[1,1]>mat[num,1]){
|
||||||
|
mat=mat[num:1,]
|
||||||
|
}
|
||||||
|
mat[,1]=mat[,1]-mat[1,1]
|
||||||
|
mat[,2]=mat[,2]-mat[1,2]
|
||||||
|
theta=-atan(mat[num,2]/mat[num,1])
|
||||||
|
A=matrix(c(cos(theta),-sin(theta),sin(theta),cos(theta)),nrow=2,byrow=TRUE)
|
||||||
|
rotpts=A%*%t(matrix(mat[2:(num-1),1:2],ncol=2))
|
||||||
|
if(max(abs(rotpts[2,]))>w){
|
||||||
|
return(FALSE)
|
||||||
|
}else{
|
||||||
|
return(TRUE)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,19 @@
|
||||||
|
LatLong2XY <-
|
||||||
|
function(lat_v,lon_v,R=6.371*10^6){
|
||||||
|
th0 = min(lon_v)
|
||||||
|
th1 = max(lon_v)
|
||||||
|
ph0 = min(lat_v)
|
||||||
|
ph1 = max(lat_v)
|
||||||
|
d1 = 2*pi*R*((ph1-ph0)*2*pi/360)/(2*pi)
|
||||||
|
d2 = 2*pi*(R*sin(pi/2-ph1*2*pi/360))*((th1-th0)*2*pi/360)/(2*pi)
|
||||||
|
d3 = 2*pi*(R*sin(pi/2-ph0*2*pi/360))*((th1-th0)*2*pi/360)/(2*pi)
|
||||||
|
x_v=rep(0,length(lon_v))
|
||||||
|
y_v=rep(0,length(lat_v))
|
||||||
|
for(i in 1:length(lat_v)){
|
||||||
|
w1=(lat_v[i]-ph0)/(ph1-ph0)
|
||||||
|
w2=(lon_v[i]-th0)/(th1-th0)
|
||||||
|
x_v[i]=w1*abs(d3-d2)/2+w2*(d3*(1-w1)+d2*w1)
|
||||||
|
y_v[i]=w1*d1*sin(acos(abs((d3-d2)/(2*d1))))
|
||||||
|
}
|
||||||
|
return(list("x_v"=x_v,"y_v"=y_v))
|
||||||
|
}
|
|
@ -0,0 +1,15 @@
|
||||||
|
LocationAt <-
|
||||||
|
function(mat,tt){
|
||||||
|
for(i in 1:nrow(mat)){
|
||||||
|
if(mat[i,1]<=2){
|
||||||
|
if(mat[i,4]<=tt && mat[i,7]>=tt){
|
||||||
|
return(list('x'=mat[i,2],'y'=mat[i,3]))
|
||||||
|
}
|
||||||
|
}else if(mat[i,1]==3){
|
||||||
|
if(mat[i,4]==tt){
|
||||||
|
return(list('x'=mat[i,2],'y'=mat[i,3]))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return(NULL)
|
||||||
|
}
|
|
@ -0,0 +1,6 @@
|
||||||
|
MaxDiam <-
|
||||||
|
function(mat){
|
||||||
|
IDmv=which(mat[,1]<=2)
|
||||||
|
if(length(IDmv)<2){return(0)}
|
||||||
|
return(max(dist(mat[IDmv,2:3])))
|
||||||
|
}
|
|
@ -0,0 +1,29 @@
|
||||||
|
MaxDistBetweenTrajectories <-
|
||||||
|
function(mat1,mat2,t_gap=1){
|
||||||
|
mat1=matrix(mat1,ncol=7);mat2=matrix(mat2,ncol=7)
|
||||||
|
t0=mat1[1,4];t1=mat2[nrow(mat2),7]
|
||||||
|
t_mesh = seq(t0,t1,t_gap)
|
||||||
|
d_v = rep(0,length(t_mesh))
|
||||||
|
for(i in 1:length(t_mesh)){
|
||||||
|
ID1=intersect(which(mat1[,4]<=t_mesh[i]),which(mat1[,7]>=t_mesh[i]))[1]
|
||||||
|
if(mat1[ID1,1]==2){
|
||||||
|
x1=mat1[ID1,2]
|
||||||
|
y1=mat1[ID1,3]
|
||||||
|
}else{
|
||||||
|
w1=(t_mesh[i]-mat1[ID1,4])/(mat1[ID1,7]-mat1[ID1,4])
|
||||||
|
x1=mat1[ID1,2]*(1-w1)+mat1[ID1,5]*w1
|
||||||
|
y1=mat1[ID1,3]*(1-w1)+mat1[ID1,6]*w1
|
||||||
|
}
|
||||||
|
ID2=intersect(which(mat2[,4]<=t_mesh[i]),which(mat2[,7]>=t_mesh[i]))[1]
|
||||||
|
if(mat2[ID2,1]==2){
|
||||||
|
x2=mat2[ID2,2]
|
||||||
|
y2=mat2[ID2,3]
|
||||||
|
}else{
|
||||||
|
w2=(t_mesh[i]-mat2[ID2,4])/(mat2[ID2,7]-mat2[ID2,4])
|
||||||
|
x2=mat2[ID2,2]*(1-w2)+mat2[ID2,5]*w2
|
||||||
|
y2=mat2[ID2,3]*(1-w2)+mat2[ID2,6]*w2
|
||||||
|
}
|
||||||
|
d_v[i] = sqrt((x1-x2)^2+(y1-y2)^2)
|
||||||
|
}
|
||||||
|
return(max(d_v))
|
||||||
|
}
|
|
@ -0,0 +1,10 @@
|
||||||
|
MaxHomeDist <-
|
||||||
|
function(mat,homex,homey){
|
||||||
|
IDmv=which(mat[,1]<=2)
|
||||||
|
if(length(IDmv)==0){return(NA)}
|
||||||
|
dfhome=rep(NA,length(IDmv))
|
||||||
|
for(i in 1:length(IDmv)){
|
||||||
|
dfhome[i]=sqrt((mat[IDmv[i],2]-homex)^2+(mat[IDmv[i],3]-homey)^2)
|
||||||
|
}
|
||||||
|
return(max(dfhome))
|
||||||
|
}
|
|
@ -0,0 +1,5 @@
|
||||||
|
MaxRadius <-
|
||||||
|
function(mat){
|
||||||
|
cent=colMeans(mat,na.rm=TRUE)
|
||||||
|
return(max(apply(mat,1,function(x) sqrt((x[1]-cent[1])^2+(x[2]-cent[2])^2)),na.rm=TRUE))
|
||||||
|
}
|
|
@ -0,0 +1,10 @@
|
||||||
|
MinsMissing <-
|
||||||
|
function(mat){
|
||||||
|
tot=0
|
||||||
|
for(i in 1:nrow(mat)){
|
||||||
|
if(mat[i,1]==4){
|
||||||
|
tot = tot+mat[i,7]-mat[i,4]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return(tot/60)
|
||||||
|
}
|
|
@ -0,0 +1,56 @@
|
||||||
|
MobilityFeatures <-
|
||||||
|
function(locations_df,
|
||||||
|
ACCURACY_LIM=51, ### meters GPS accuracy
|
||||||
|
ITRVL=10, ### seconds (data concatenation)
|
||||||
|
nreps=1, ### simulate missing data numer of times
|
||||||
|
tz="", ### time zone of data, defaults to current time zone
|
||||||
|
CENTERRAD=200, ### meters radius from significant locations considered
|
||||||
|
wtype="GLR",
|
||||||
|
spread_pars=c(10,1),
|
||||||
|
minpausedur=300,
|
||||||
|
minpausedist=60,
|
||||||
|
rad_fp=NULL,
|
||||||
|
wid_fp=NULL
|
||||||
|
){
|
||||||
|
mobmatmiss=GPS2MobMat(locations_df,itrvl=ITRVL,accuracylim=ACCURACY_LIM,r=rad_fp,w=wid_fp)
|
||||||
|
mobmat = GuessPause(mobmatmiss,mindur=minpausedur,r=minpausedist)
|
||||||
|
obj=InitializeParams(mobmat)
|
||||||
|
qOKmsg=MobmatQualityOK(mobmat,obj)
|
||||||
|
if(qOKmsg!=""){
|
||||||
|
cat(qOKmsg,"\n")
|
||||||
|
return(NULL)
|
||||||
|
}
|
||||||
|
lsmf = list()
|
||||||
|
lssigloc = list()
|
||||||
|
for(repnum in 1:nreps){
|
||||||
|
if(repnum==1){
|
||||||
|
cat("Sim #: 1")
|
||||||
|
}else if(repnum<=nreps-1){
|
||||||
|
cat(paste(" ",repnum,sep=""))
|
||||||
|
}else{
|
||||||
|
cat(paste(" ",nreps,"\n",sep=""))
|
||||||
|
}
|
||||||
|
out3=SimulateMobilityGaps(mobmat,obj,wtype,spread_pars)
|
||||||
|
IDundef=which(out3[,1]==3)
|
||||||
|
if(length(IDundef)>0){
|
||||||
|
out3=out3[-IDundef,]
|
||||||
|
}
|
||||||
|
obj3=InitializeParams(out3)
|
||||||
|
out_GMFM=GetMobilityFeaturesMat(out3,obj3,mobmatmiss,tz,CENTERRAD,ITRVL)
|
||||||
|
lsmf[[repnum]]=out_GMFM[[1]]
|
||||||
|
lssigloc[[repnum]]=out_GMFM[[2]]
|
||||||
|
}
|
||||||
|
cat("\n\n")
|
||||||
|
if(length(lsmf)!=0){
|
||||||
|
featavg = lsmf[[1]]
|
||||||
|
if(nreps>1){
|
||||||
|
for(i in 2:nreps){
|
||||||
|
featavg=featavg+lsmf[[i]]
|
||||||
|
}
|
||||||
|
featavg=featavg/nreps
|
||||||
|
}
|
||||||
|
}else{
|
||||||
|
featavg=NULL
|
||||||
|
}
|
||||||
|
return(list('mobmat'=mobmat,'mobmatmiss'=mobmatmiss,'featsims'=lsmf,'siglocsims'=lssigloc,'featavg'=featavg))
|
||||||
|
}
|
|
@ -0,0 +1,14 @@
|
||||||
|
MobmatQualityOK <-
|
||||||
|
function(mobmat,obj){
|
||||||
|
msg=""
|
||||||
|
if(!is.matrix(mobmat)){
|
||||||
|
msg = "Mobmat not a matrix. Removing individual from analysis.\n"
|
||||||
|
}
|
||||||
|
if(length(obj$ID1)==0){
|
||||||
|
msg= "No flights in mobmat. Removing individual from analysis.\n"
|
||||||
|
}
|
||||||
|
if(length(obj$ID2)==0){
|
||||||
|
msg= "No pauses in mobmat. Removing individual from analysis.\n"
|
||||||
|
}
|
||||||
|
return(msg)
|
||||||
|
}
|
|
@ -0,0 +1,14 @@
|
||||||
|
ProbPause <-
|
||||||
|
function(mat){
|
||||||
|
tpause = 0
|
||||||
|
tflight = 0
|
||||||
|
for(i in 1:nrow(mat)){
|
||||||
|
if(mat[i,1]==1){
|
||||||
|
tflight = tflight + mat[i,7]-mat[i,4]
|
||||||
|
}
|
||||||
|
if(mat[i,1]==2){
|
||||||
|
tpause = tpause + mat[i,7]-mat[i,4]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return(tpause/(tpause+tflight))
|
||||||
|
}
|
|
@ -0,0 +1,30 @@
|
||||||
|
ProgressBar <-
|
||||||
|
function (maxn, ind){
|
||||||
|
if(maxn<51){
|
||||||
|
if (ind == 1) {
|
||||||
|
cat("|1%--------------------50%--------------------100%|\n")
|
||||||
|
cat("|")
|
||||||
|
return()
|
||||||
|
}else{
|
||||||
|
numprint=floor(50*ind/maxn)-floor(50*(ind-1)/maxn)
|
||||||
|
if(numprint>0){
|
||||||
|
for(i in 1:numprint){
|
||||||
|
cat("|")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}else{
|
||||||
|
if (ind == 1) {
|
||||||
|
cat("|1%--------------------50%--------------------100%|\n")
|
||||||
|
cat("|")
|
||||||
|
return()
|
||||||
|
}
|
||||||
|
if (maxn == ind) {
|
||||||
|
cat("|\n")
|
||||||
|
return()
|
||||||
|
}
|
||||||
|
if (floor(50 * ind/maxn) != floor(50 * (ind - 1)/maxn)) {
|
||||||
|
cat("|")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,36 @@
|
||||||
|
RadiusOfGyration <-
|
||||||
|
function(mat,ITRVL){
|
||||||
|
mat=matrix(mat,ncol=7)
|
||||||
|
IDskip=which(mat[,1]==4)
|
||||||
|
if(length(IDskip)>0){
|
||||||
|
mat=matrix(mat[-IDskip,],ncol=7)
|
||||||
|
}
|
||||||
|
N=nrow(mat)
|
||||||
|
w_v=rep(0,N)
|
||||||
|
x_v=rep(0,N)
|
||||||
|
y_v=rep(0,N)
|
||||||
|
for(i in 1:N){
|
||||||
|
if(mat[i,1]==4){
|
||||||
|
next
|
||||||
|
}
|
||||||
|
if(mat[i,1]==3){
|
||||||
|
x_v[i]=mat[i,2]
|
||||||
|
y_v[i]=mat[i,3]
|
||||||
|
w_v[i]=ITRVL
|
||||||
|
}
|
||||||
|
if(mat[i,1]==1){
|
||||||
|
x_v[i]=mean(mat[i,c(2,5)])
|
||||||
|
y_v[i]=mean(mat[i,c(3,6)])
|
||||||
|
w_v[i]=mat[i,7]-mat[i,4]
|
||||||
|
}
|
||||||
|
if(mat[i,1]==2){
|
||||||
|
x_v[i]=mat[i,2]
|
||||||
|
y_v[i]=mat[i,3]
|
||||||
|
w_v[i]=mat[i,7]-mat[i,4]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
sumw_v=sum(w_v)
|
||||||
|
xavg=sum(w_v*x_v)/sumw_v
|
||||||
|
yavg=sum(w_v*y_v)/sumw_v
|
||||||
|
return(sqrt(sum(((x_v-xavg)^2+(y_v-yavg)^2)*w_v)/sumw_v))
|
||||||
|
}
|
|
@ -0,0 +1,101 @@
|
||||||
|
RandomBridge <-
|
||||||
|
function(x0,y0,x1,y1,t0,t1,fd,ft,fts,fa,fw,probp,pt,pts,pw,allts,allw,ind11,ind12,i_ind,pxs,pys,fxs,fys,allxs,allys,wtype,canpause,niter=100,spread_pars){
|
||||||
|
success=FALSE
|
||||||
|
for(i in 1:niter){
|
||||||
|
outmat=c()
|
||||||
|
curx=x0
|
||||||
|
cury=y0
|
||||||
|
curt=t0
|
||||||
|
tarrive=t0
|
||||||
|
while(TRUE){
|
||||||
|
## new
|
||||||
|
varmult=1
|
||||||
|
while(TRUE){
|
||||||
|
if(wtype=="TL"){
|
||||||
|
fw=dt(spread_pars[1]*(fts-curt)/(varmult*(t1-t0)),df=spread_pars[2])
|
||||||
|
pw=dt(spread_pars[1]*(pts-curt)/(varmult*(t1-t0)),df=spread_pars[2])
|
||||||
|
allw=dt(spread_pars[1]*(allts-curt)/(varmult*(t1-t0)),df=spread_pars[2])
|
||||||
|
}else if(wtype=="GL"){
|
||||||
|
fw=dt(spread_pars[1]*sqrt((fxs-curx)^2+(fys-cury)^2)/(50*varmult),df=spread_pars[2])
|
||||||
|
pw=dt(spread_pars[1]*sqrt((pxs-curx)^2+(pys-cury)^2)/(50*varmult),df=spread_pars[2])
|
||||||
|
allw=dt(spread_pars[1]*sqrt((allxs-curx)^2+(allys-cury)^2)/(50*varmult),df=spread_pars[2])
|
||||||
|
}else if(wtype=="GLR"){
|
||||||
|
fw=dt(spread_pars[1]*sqrt((fxs-curx)^2+(fys-cury)^2)/(50*varmult),df=spread_pars[2])*dt(spread_pars[1]*apply(cbind(abs((fts-curt))%%(60*60*24),(60*60*24)-abs((fts-curt))%%(60*60*24)),1,min)/(varmult*(t1-t0)),df=spread_pars[2])
|
||||||
|
pw=dt(spread_pars[1]*sqrt((pxs-curx)^2+(pys-cury)^2)/(50*varmult),df=spread_pars[2])*dt(spread_pars[1]*apply(cbind(abs((pts-curt))%%(60*60*24),(60*60*24)-abs((pts-curt))%%(60*60*24)),1,min)/(varmult*(t1-t0)),df=spread_pars[2])
|
||||||
|
allw=dt(spread_pars[1]*sqrt((allxs-curx)^2+(allys-cury)^2)/(50*varmult),df=spread_pars[2])*dt(spread_pars[1]*apply(cbind(abs((allts-curt))%%(60*60*24),(60*60*24)-abs((allts-curt))%%(60*60*24)),1,min)/(varmult*(t1-t0)),df=spread_pars[2])
|
||||||
|
}
|
||||||
|
if(length(pts)>0 && length(fts)>0 && sum(fw)>0 && sum(pw)>0){break}
|
||||||
|
if(length(pts)==0 && length(fts)>0 && sum(fw)>0){break}
|
||||||
|
if(length(fts)==0 && length(pts)>0 && sum(pw)>0){break}
|
||||||
|
varmult=varmult*2
|
||||||
|
}
|
||||||
|
s11=sum(allw[ind11],na.rm=T)
|
||||||
|
s12=sum(allw[ind12],na.rm=T)
|
||||||
|
if(s11+s12==0){phatcur=probp}else{phatcur=s12/(s11+s12)}
|
||||||
|
probp=phatcur
|
||||||
|
## end
|
||||||
|
|
||||||
|
if(canpause && runif(1)<probp){ #pause happens
|
||||||
|
canpause=FALSE
|
||||||
|
p_samp=sample(pt,1,prob=pw)
|
||||||
|
if(curt+p_samp<t1){
|
||||||
|
nextline = c(2,curx,cury,curt,NA,NA,curt+p_samp)
|
||||||
|
curt=curt+p_samp
|
||||||
|
outmat=rbind(outmat,nextline)
|
||||||
|
}else{
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}else{ #flight happens
|
||||||
|
canpause=TRUE
|
||||||
|
IDsamp = sample(1:length(fa),1,prob=fw)
|
||||||
|
a_samp = fa[IDsamp]
|
||||||
|
d_samp = fd[IDsamp]
|
||||||
|
t_samp = ft[IDsamp]
|
||||||
|
if(curt+t_samp<t1){
|
||||||
|
nexx=curx+cos(a_samp)*d_samp
|
||||||
|
nexy=cury+sin(a_samp)*d_samp
|
||||||
|
if(is.nan(nexx)){break}
|
||||||
|
nextline = c(1,curx,cury,curt,nexx,nexy,curt+t_samp)
|
||||||
|
curt=curt+t_samp
|
||||||
|
curx=nexx
|
||||||
|
cury=nexy
|
||||||
|
outmat=rbind(outmat,nextline)
|
||||||
|
tarrive=curt
|
||||||
|
}else{
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(tarrive>t0){
|
||||||
|
success=TRUE
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(!success){
|
||||||
|
return(c(1,x0,y0,t0,x1,y1,t1))
|
||||||
|
return(NULL)
|
||||||
|
}else{
|
||||||
|
curx=x0
|
||||||
|
cury=y0
|
||||||
|
for(i in 1:nrow(outmat)){
|
||||||
|
if(outmat[i,1]==1){
|
||||||
|
outmat[i,2]=curx
|
||||||
|
outmat[i,3]=cury
|
||||||
|
curt=outmat[i,7]
|
||||||
|
w=(tarrive-curt)/(tarrive-t0)
|
||||||
|
outmat[i,5]=outmat[i,5]*w+x1*(1-w)
|
||||||
|
outmat[i,6]=outmat[i,6]*w+y1*(1-w)
|
||||||
|
curx=outmat[i,5]
|
||||||
|
cury=outmat[i,6]
|
||||||
|
}else{
|
||||||
|
curt=outmat[i,4]
|
||||||
|
outmat[i,2]=curx
|
||||||
|
outmat[i,3]=cury
|
||||||
|
}
|
||||||
|
}
|
||||||
|
outmat[nrow(outmat),7]=t1
|
||||||
|
rownames(outmat)=NULL
|
||||||
|
colnames(outmat)=c("Code","x0","y0","t0","x1","y1","t1")
|
||||||
|
return(outmat)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,22 @@
|
||||||
|
SigLocEntropy <-
|
||||||
|
function(mat,slout,CENTERRAD){
|
||||||
|
tp = rep(0,nrow(slout))
|
||||||
|
for(i in 1:nrow(mat)){
|
||||||
|
if(mat[i,1]==2){
|
||||||
|
for(j in 1:nrow(slout)){
|
||||||
|
if(sqrt((slout[j,1]-mat[i,2])^2+(slout[j,2]-mat[i,3])^2)<CENTERRAD){
|
||||||
|
tp[j] = tp[j] + mat[i,7]-mat[i,4]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
tot=0
|
||||||
|
if(sum(tp)==0){return(0)}
|
||||||
|
for(i in 1:nrow(slout)){
|
||||||
|
p=tp[i]/sum(tp)
|
||||||
|
if(p>0){
|
||||||
|
tot=tot-p*log(p)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return(tot)
|
||||||
|
}
|
|
@ -0,0 +1,68 @@
|
||||||
|
SigLocs <-
|
||||||
|
function(mobmat,obj,CENTERRAD=125,MINPAUSETIME=600,tz=""){
|
||||||
|
if(length(obj$ID2)==0){
|
||||||
|
warning("No pauses in mobmat within function SigLocs!")
|
||||||
|
return(NULL)
|
||||||
|
}else if(length(obj$ID2)==1){
|
||||||
|
outmat=data.frame('x'=mobmat[obj$ID2[1],2],'y'=mobmat[obj$ID2[1],3],'timepresent'=c(0),'home'=c(1))
|
||||||
|
nrowfc=1
|
||||||
|
}else{
|
||||||
|
ptred=floor(obj$pt/MINPAUSETIME)
|
||||||
|
if(length(which(ptred>0))<2){
|
||||||
|
warning("No pauses long enough in mobmat within function SigLocs!")
|
||||||
|
return(NULL)
|
||||||
|
}
|
||||||
|
pmat=c()
|
||||||
|
for(i in 1:length(obj$ID2)){
|
||||||
|
if(ptred[i]>0){
|
||||||
|
pmat=rbind(pmat,matrix(rep(mobmat[obj$ID2[i],2:3],ptred[i]),ncol=2,byrow=T))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
kmeansk_v=2:length(which(ptred>0))
|
||||||
|
lsfit = list()
|
||||||
|
for(i in 1:length(kmeansk_v)){
|
||||||
|
kmeansk = kmeansk_v[i]
|
||||||
|
fit = kmeans(pmat,centers=kmeansk)
|
||||||
|
lsfit[[i]]=fit
|
||||||
|
if(min(dist(fit$centers))<CENTERRAD*2 || i==length(kmeansk_v)){
|
||||||
|
if(i>1){
|
||||||
|
kmeansk=kmeansk_v[i-1]
|
||||||
|
fit = lsfit[[i-1]]
|
||||||
|
}
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
nrowfc = nrow(fit$centers)
|
||||||
|
outmat=data.frame('x'=fit$centers[,1],'y'=fit$centers[,2],'timepresent'=rep(0,nrow(fit$centers)),'home'=rep(0,nrow(fit$centers)))
|
||||||
|
}
|
||||||
|
#Determine time spent at these significant locations
|
||||||
|
for(i in 1:length(obj$ID2)){
|
||||||
|
for(j in 1:nrowfc){
|
||||||
|
if(sqrt((mobmat[obj$ID2[i],2]-outmat$x[j])^2+(mobmat[obj$ID2[i],3]-outmat$y[j])^2)<CENTERRAD){
|
||||||
|
outmat[j,3]=outmat[j,3]+obj$pt[i]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#Determine which is home (where is the night spent)
|
||||||
|
for(i in 1:length(obj$ID2)){
|
||||||
|
xx=as.POSIXct((mobmat[obj$ID2[i],7]+mobmat[obj$ID2[i],4])/2,tz=tz,origin="1970-01-01")
|
||||||
|
hourofday = as.numeric(strsplit(strsplit(as.character(xx),":")[[1]][1]," ")[[1]][2])
|
||||||
|
if(hourofday>=21 || hourofday<6){
|
||||||
|
for(j in 1:nrowfc){
|
||||||
|
if(sqrt((mobmat[obj$ID2[i],2]-outmat$x[j])^2+(mobmat[obj$ID2[i],3]-outmat$y[j])^2)<CENTERRAD){
|
||||||
|
outmat[j,4]=outmat[j,4]+obj$pt[i]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
IDmax =order(outmat[,4],decreasing=T)[1]
|
||||||
|
outmat[,4]=rep(0,nrow(outmat))
|
||||||
|
outmat[IDmax,4]=1
|
||||||
|
outmat=outmat[order(outmat[,3],decreasing=T),]
|
||||||
|
IDrm=which(outmat[,3]==0)
|
||||||
|
if(length(IDrm)>0){
|
||||||
|
outmat=outmat[-IDrm,]
|
||||||
|
}
|
||||||
|
rownames(outmat)=NULL
|
||||||
|
return(outmat)
|
||||||
|
}
|
|
@ -0,0 +1,14 @@
|
||||||
|
SigLocsVisited <-
|
||||||
|
function(mat,slout,CENTERRAD){
|
||||||
|
places_visited = rep(0,nrow(slout))
|
||||||
|
for(i in 1:nrow(mat)){
|
||||||
|
if(mat[i,1]<=3){
|
||||||
|
for(j in 1:nrow(slout)){
|
||||||
|
if(sqrt((slout[j,1]-mat[i,2])^2 + (slout[j,2]-mat[i,3])^2)<CENTERRAD){
|
||||||
|
places_visited[j]=1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return(sum(places_visited))
|
||||||
|
}
|
|
@ -0,0 +1,41 @@
|
||||||
|
SimulateMobilityGaps <-
|
||||||
|
function(suboutmat,obj,wtype="TL",spread_pars=c(1,10)){
|
||||||
|
ind11=obj$ind11;ind12=obj$ind12;fd=obj$fd;ft=obj$ft;fts=obj$fts;fa=obj$fa;pt=obj$pt;pts=obj$pts;allts=obj$allts;phatall=obj$phatall;fxs=obj$fxs;fys=obj$fys;pxs=obj$pxs;pys=obj$pys;allxs=obj$allxs;allys=obj$allys
|
||||||
|
if(nrow(suboutmat)==0){
|
||||||
|
return(suboutmat)
|
||||||
|
}
|
||||||
|
foutmat=c()
|
||||||
|
for(i in 1:nrow(suboutmat)){
|
||||||
|
if(suboutmat[i,1]==1){
|
||||||
|
curx=suboutmat[i,5]
|
||||||
|
cury=suboutmat[i,6]
|
||||||
|
foutmat=rbind(foutmat,suboutmat[i,])
|
||||||
|
}else if(suboutmat[i,1]<=3){
|
||||||
|
curx=suboutmat[i,2]
|
||||||
|
cury=suboutmat[i,3]
|
||||||
|
foutmat=rbind(foutmat,suboutmat[i,])
|
||||||
|
}
|
||||||
|
if(suboutmat[i,1]==4 && i>1 && i<nrow(suboutmat)){
|
||||||
|
varmult=1
|
||||||
|
while(TRUE){
|
||||||
|
fw=dnorm((fts-mean(c(suboutmat[i,4],suboutmat[i,7])))/(varmult*(suboutmat[i,7]-suboutmat[i,4])))
|
||||||
|
pw=dnorm((pts-mean(c(suboutmat[i,4],suboutmat[i,7])))/(varmult*(suboutmat[i,7]-suboutmat[i,4])))
|
||||||
|
allw=dnorm((allts-mean(c(suboutmat[i,4],suboutmat[i,7])))/(varmult*(suboutmat[i,7]-suboutmat[i,4])))
|
||||||
|
if(length(pts)>0 && length(fts)>0 && sum(fw)>0 && sum(pw)>0){break}
|
||||||
|
if(length(pts)==0 && length(fts)>0 && sum(fw)>0){break}
|
||||||
|
if(length(fts)==0 && length(pts)>0 && sum(pw)>0){break}
|
||||||
|
varmult=varmult*2
|
||||||
|
}
|
||||||
|
s11=sum(allw[ind11],na.rm=T)
|
||||||
|
s12=sum(allw[ind12],na.rm=T)
|
||||||
|
if(s11+s12==0){phatcur=phatall}else{phatcur=s12/(s11+s12)}
|
||||||
|
if(wtype=="LI"){
|
||||||
|
foutmat=rbind(foutmat,c(1,curx,cury,suboutmat[i,4],suboutmat[i+1,2],suboutmat[i+1,3],suboutmat[i,7]))
|
||||||
|
}else{
|
||||||
|
rbout=matrix(RandomBridge(x0=curx,y0=cury,x1=suboutmat[i+1,2],y1=suboutmat[i+1,3],t0=suboutmat[i,4],t1=suboutmat[i,7],fd=fd,ft=ft,fts=fts,fa=fa,fw=fw,probp=phatcur,pt=pt,pts=pts,pw=pw,allts=allts,allw=allw,ind11=ind11,ind12=ind12,i_ind=i,pxs=pxs,pys=pys,fxs=fxs,fys=fys,allxs=allxs,allys=allys,wtype=wtype,canpause=suboutmat[i-1,1]==1,niter=100,spread_pars=spread_pars),ncol=7)
|
||||||
|
foutmat=rbind(foutmat,rbout)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return(foutmat)
|
||||||
|
}
|
|
@ -0,0 +1,11 @@
|
||||||
|
StdFlightDur <-
|
||||||
|
function(mat){
|
||||||
|
ID1=which(mat[,1]==1)
|
||||||
|
if(length(ID1)==0){return(0)}
|
||||||
|
try1=try(sd(as.numeric(mat[ID1,7]-mat[ID1,4])),silent=TRUE)
|
||||||
|
if(class(try1) == "try-error" || is.na(try1)){
|
||||||
|
return(0)
|
||||||
|
}else{
|
||||||
|
return(try1)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,11 @@
|
||||||
|
StdFlightLen <-
|
||||||
|
function(mat){
|
||||||
|
ID1=which(mat[,1]==1)
|
||||||
|
if(length(ID1)<=1){return(0)}
|
||||||
|
try1=try(sd(as.numeric(sqrt((mat[ID1,6]-mat[ID1,3])^2+(mat[ID1,5]-mat[ID1,2])^2))),silent=TRUE)
|
||||||
|
if(class(try1) == "try-error" || is.na(try1)){
|
||||||
|
return(0)
|
||||||
|
}else{
|
||||||
|
return(try1)
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,35 @@
|
||||||
|
WriteSurveyAnswers2File <-
|
||||||
|
function(fildir,survey_id,SID){
|
||||||
|
try1=try(setwd(fildir),silent=TRUE)
|
||||||
|
if(class(try1) == "try-error"){
|
||||||
|
warning(paste(fildir,"does not exist."))
|
||||||
|
return(NULL)
|
||||||
|
}
|
||||||
|
filelist <- list.files(pattern = "\\.csv$")
|
||||||
|
if(length(filelist)==0){return(NULL)}
|
||||||
|
date_v=substr(filelist,1,10)
|
||||||
|
## keep only the last survey of each day
|
||||||
|
IDkeep=length(date_v)
|
||||||
|
curdate = date_v[length(date_v)]
|
||||||
|
for(i in length(date_v):1){
|
||||||
|
nexdate=date_v[i]
|
||||||
|
if(curdate!=nexdate){
|
||||||
|
IDkeep=c(IDkeep,i)
|
||||||
|
curdate=nexdate
|
||||||
|
}
|
||||||
|
}
|
||||||
|
IDkeep=rev(IDkeep)
|
||||||
|
|
||||||
|
outmat=c()
|
||||||
|
for(i in IDkeep){
|
||||||
|
x=read.csv(filelist[i],fileEncoding="UTF-8")
|
||||||
|
outmat=rbind(outmat,c(date_v[i],x$answer))
|
||||||
|
}
|
||||||
|
try1=try(colnames(outmat)<-c("Date",paste(as.character(x$question.text)," (",as.character(x$question.answer.options),")",sep="")),silent=TRUE)
|
||||||
|
if(class(try1) == "try-error"){
|
||||||
|
warning(paste("Survey non-constant over time for ID:",SID))
|
||||||
|
return(NULL)
|
||||||
|
}
|
||||||
|
write.table(outmat,paste("SurveyAnswers_",survey_id,"_",SID,".txt",sep=""),quote=F,col.names=T,row.names=F,sep="\t")
|
||||||
|
return("success")
|
||||||
|
}
|
|
@ -0,0 +1,96 @@
|
||||||
|
plot.flights <-
|
||||||
|
function(mat,xrang=NULL,yrang=NULL,diminch=6,add2plot=FALSE,addlegend=TRUE,outfile=NULL,title=NULL){
|
||||||
|
#col24hour_v=c("#253494","#2c7fb8","#41b6c4","#7fcdbb","#c7e9b4","#ffffcc","#fed976","#feb24c","#fd8d3c","#fc4e2a","#e31a1c","#b10026","#7a0177","#ae017e","#dd3497","#f768a1","#fa9fb5","#fcc5c0","#edf8fb","#ccece6","#99d8c9","#66c2a4","#2ca25f","#006d2c")
|
||||||
|
col24hour_v=c(c("#08306b","#08519c","#2171b5","#4292c6","#6baed6","#9ecae1","#fcbba1","#fc9272","#fb6a4a","#ef3b2c","#cb181d","#99000d"),rev(c("#08306b","#08519c","#2171b5","#4292c6","#6baed6","#9ecae1","#fcbba1","#fc9272","#fb6a4a","#ef3b2c","#cb181d","#99000d")))
|
||||||
|
if(nrow(mat)==0){
|
||||||
|
return(NULL)
|
||||||
|
}
|
||||||
|
if(add2plot){outfile=NULL}
|
||||||
|
write2file=FALSE
|
||||||
|
if(!is.null(outfile)){
|
||||||
|
write2file=TRUE
|
||||||
|
}
|
||||||
|
if(write2file){
|
||||||
|
pdf(outfile,width=diminch*11/10,height=diminch)
|
||||||
|
}
|
||||||
|
if(is.null(xrang)){
|
||||||
|
xrang=plotlimits(mat)$xrang
|
||||||
|
}
|
||||||
|
if(is.null(yrang)){
|
||||||
|
yrang=plotlimits(mat)$yrang
|
||||||
|
}
|
||||||
|
if(xrang[2]-xrang[1]>yrang[2]-yrang[1]){
|
||||||
|
dif=((xrang[2]-xrang[1])-(yrang[2]-yrang[1]))
|
||||||
|
yrang[2] = yrang[2]+dif/2
|
||||||
|
yrang[1] = yrang[1]-dif/2
|
||||||
|
}else{
|
||||||
|
dif=((yrang[2]-yrang[1])-(xrang[2]-xrang[1]))
|
||||||
|
xrang[2] = xrang[2]+dif/2
|
||||||
|
xrang[1] = xrang[1]-dif/2
|
||||||
|
}
|
||||||
|
xrang[1]=xrang[1]-(xrang[2]-xrang[1])/10
|
||||||
|
if(!add2plot){
|
||||||
|
if(!is.null(title)){
|
||||||
|
par(mai=c(0,0,.4,0))
|
||||||
|
plot(NA,xlim=xrang
|
||||||
|
,ylim=yrang
|
||||||
|
,xaxt="n"
|
||||||
|
,yaxt="n"
|
||||||
|
,xlab=""
|
||||||
|
,ylab=""
|
||||||
|
,bty="n"
|
||||||
|
,main=title)
|
||||||
|
}else{
|
||||||
|
par(mai=c(0,0,0,0))
|
||||||
|
plot(NA,xlim=xrang
|
||||||
|
,ylim=yrang
|
||||||
|
,xaxt="n"
|
||||||
|
,yaxt="n"
|
||||||
|
,xlab=""
|
||||||
|
,ylab=""
|
||||||
|
,bty="n"
|
||||||
|
,main="")
|
||||||
|
}
|
||||||
|
xleg1=xrang[1]
|
||||||
|
xleg2=xleg1+(xrang[2]-xrang[1])/30
|
||||||
|
yincr=(yrang[2]-yrang[1])/40
|
||||||
|
legtext=c(" 6AM"," 12PM"," 6PM"," 12AM")
|
||||||
|
if(addlegend){
|
||||||
|
for(i in 1:24){
|
||||||
|
polygon(c(xleg1,xleg1,xleg2,xleg2),c(yrang[1]+(i-1)*yincr,yrang[1]+i*yincr,yrang[1]+i*yincr,yrang[1]+(i-1)*yincr),col=col24hour_v[i])
|
||||||
|
if(i%%6==0){
|
||||||
|
text(xleg2,yrang[1]+i*yincr,legtext[floor(i/6)],adj=0,cex=.5)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
points(xleg1,yrang[1]+26*yincr,cex=2,pch=16)
|
||||||
|
text(xleg2,yrang[1]+26*yincr,">4 hrs",adj=0,cex=.5)
|
||||||
|
points(xleg1,yrang[1]+28*yincr,cex=1,pch=16)
|
||||||
|
text(xleg2,yrang[1]+28*yincr,"1 hr",adj=0,cex=.5)
|
||||||
|
points(xleg1,yrang[1]+30*yincr,cex=.5,pch=16)
|
||||||
|
text(xleg2,yrang[1]+30*yincr,"<30 mins",adj=0,cex=.5)
|
||||||
|
#text(xleg1,yrang[1]+32.3*yincr,"Pause\nDuration",adj=0,cex=.5)
|
||||||
|
legdist=10^floor(log10((yrang[2]-yrang[1])/5))
|
||||||
|
lines(c(xrang[1],xrang[1]),c(yrang[2],yrang[2]-legdist))
|
||||||
|
lines(c(xrang[1]-(xrang[2]-xrang[1])/120,xrang[1]+(xrang[2]-xrang[1])/120),c(yrang[2],yrang[2]))
|
||||||
|
lines(c(xrang[1]-(xrang[2]-xrang[1])/120,xrang[1]+(xrang[2]-xrang[1])/120),c(yrang[2]-legdist,yrang[2]-legdist))
|
||||||
|
if(log10(legdist)<3){
|
||||||
|
text(xrang[1]+(xrang[2]-xrang[1])/50,yrang[2]-legdist/2,paste(as.character(legdist),"m"),cex=.5,srt=270,adj=c(.5,0))
|
||||||
|
}else{
|
||||||
|
text(xrang[1]+(xrang[2]-xrang[1])/50,yrang[2]-legdist/2,paste(as.character(legdist/1000),"km"),cex=.5,srt=270,adj=c(.5,0))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for(i in 1:nrow(mat)){
|
||||||
|
hour=as.numeric(strsplit(strsplit(as.character(as.POSIXct(mean(c(mat[i,4],mat[i,7]),na.rm=T),origin='1970-01-01'))," ")[[1]][2],":")[[1]][1])
|
||||||
|
if(mat[i,1]==1){
|
||||||
|
lines(c(mat[i,2],mat[i,5]),c(mat[i,3],mat[i,6]),col=col24hour_v[hour+1])
|
||||||
|
}
|
||||||
|
if(mat[i,1]==2){
|
||||||
|
pwidth=max(.5,min(sqrt(2*(mat[i,7]-mat[i,4])/7200),2))
|
||||||
|
points(mat[i,2],mat[i,3],pch=19,col=paste(col24hour_v[hour+1],"CC",sep=""),cex=pwidth)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(write2file){
|
||||||
|
dev.off()
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,14 @@
|
||||||
|
plotlimits <-
|
||||||
|
function(mat,defaultdist=100){
|
||||||
|
xrang=range(c(mat[which(mat[,1]<=2),2],mat[which(mat[,1]<=1),5]))
|
||||||
|
yrang=range(c(mat[which(mat[,1]<=2),3],mat[which(mat[,1]<=1),6]))
|
||||||
|
if(xrang[2]==xrang[1]){
|
||||||
|
xrang[2]=xrang[2]+defaultdist/2
|
||||||
|
xrang[1]=xrang[1]-defaultdist/2
|
||||||
|
}
|
||||||
|
if(yrang[2]==yrang[1]){
|
||||||
|
yrang[2]=yrang[2]+defaultdist/2
|
||||||
|
yrang[1]=yrang[1]-defaultdist/2
|
||||||
|
}
|
||||||
|
return(list(xrang=xrang,yrang=yrang))
|
||||||
|
}
|
|
@ -0,0 +1,22 @@
|
||||||
|
library(dplyr)
|
||||||
|
|
||||||
|
# Load Ian Barnett's code. Taken from https://scholar.harvard.edu/ibarnett/software/gpsmobility
|
||||||
|
file.sources = list.files(c("src/features/location_barnett"), pattern="*.R$", full.names=TRUE, ignore.case=TRUE)
|
||||||
|
sapply(file.sources,source,.GlobalEnv)
|
||||||
|
|
||||||
|
accuracy_limit <- snakemake@params[["accuracy_limit"]]
|
||||||
|
timezone <- snakemake@params[["timezone"]]
|
||||||
|
|
||||||
|
location <- read.csv(snakemake@input[[1]], stringsAsFactors = F) %>%
|
||||||
|
select(timestamp, latitude = double_latitude, longitude = double_longitude, altitude = double_altitude, accuracy)
|
||||||
|
|
||||||
|
if (nrow(location) > 0){
|
||||||
|
features <- MobilityFeatures(location, ACCURACY_LIM = accuracy_limit, tz = timezone)
|
||||||
|
|
||||||
|
# Copy index (dates) as a column
|
||||||
|
outmatrix = cbind(rownames(features$featavg), features$featavg)
|
||||||
|
colnames(outmatrix)=c("local_date",tolower(colnames(features$featavg)))
|
||||||
|
write.csv(outmatrix,snakemake@output[[1]], row.names = F)
|
||||||
|
} else {
|
||||||
|
write.csv(data.frame(),snakemake@output[[1]])
|
||||||
|
}
|
Loading…
Reference in New Issue