Refactor SMS features
parent
e82c9c36b3
commit
09753905f2
|
@ -0,0 +1,54 @@
|
|||
filter_by_day_segment <- function(data, day_segment) {
|
||||
if(day_segment %in% c("morning", "afternoon", "evening", "night"))
|
||||
data <- data %>% filter(local_day_segment == day_segment)
|
||||
return(data)
|
||||
}
|
||||
|
||||
base_sms_features <- function(sms, sms_type, day_segment, requested_features){
|
||||
# Output dataframe
|
||||
features = data.frame(local_date = character(), stringsAsFactors = FALSE)
|
||||
|
||||
# The name of the features this function can compute
|
||||
base_features_names <- c("countmostfrequentcontact", "count", "distinctcontacts", "timefirstsms", "timelastsms")
|
||||
|
||||
# The subset of requested features this function can compute
|
||||
features_to_compute <- intersect(base_features_names, requested_features)
|
||||
|
||||
# Filter rows that belong to the sms type and day segment of interest
|
||||
sms <- sms %>% filter(message_type == ifelse(sms_type == "received", "1", "2")) %>%
|
||||
filter_by_day_segment(day_segment)
|
||||
|
||||
# If there are not features or data to work with, return an empty df with appropiate columns names
|
||||
if(length(features_to_compute) == 0)
|
||||
return(features)
|
||||
if(nrow(sms) < 1)
|
||||
return(cbind(features, read.csv(text = paste(paste("sms", sms_type, day_segment, features_to_compute, sep = "_"), collapse = ","), stringsAsFactors = FALSE)))
|
||||
|
||||
for(feature_name in features_to_compute){
|
||||
if(feature_name == "countmostfrequentcontact"){
|
||||
# Get the number of messages for the most frequent contact throughout the study
|
||||
feature <- sms %>% group_by(trace) %>%
|
||||
mutate(N=n()) %>%
|
||||
ungroup() %>%
|
||||
filter(N == max(N)) %>%
|
||||
group_by(local_date) %>%
|
||||
summarise(!!paste("sms", sms_type, day_segment, feature_name, sep = "_") := n()) %>%
|
||||
replace(is.na(.), 0)
|
||||
|
||||
features <- merge(features, feature, by="local_date", all = TRUE)
|
||||
} else {
|
||||
feature <- sms %>%
|
||||
group_by(local_date)
|
||||
|
||||
feature <- switch(feature_name,
|
||||
"count" = feature %>% summarise(!!paste("sms", sms_type, day_segment, feature_name, sep = "_") := n()),
|
||||
"distinctcontacts" = feature %>% summarise(!!paste("sms", sms_type, day_segment, feature_name, sep = "_") := n_distinct(trace)),
|
||||
"timefirstsms" = feature %>% summarise(!!paste("sms", sms_type, day_segment, feature_name, sep = "_") := first(local_hour) + (first(local_minute)/60)),
|
||||
"timelastsms" = feature %>% summarise(!!paste("sms", sms_type, day_segment, feature_name, sep = "_") := last(local_hour) + (last(local_minute)/60)))
|
||||
|
||||
features <- merge(features, feature, by="local_date", all = TRUE)
|
||||
}
|
||||
}
|
||||
|
||||
return(features)
|
||||
}
|
|
@ -1,50 +1,20 @@
|
|||
# If you want to implement extra features, source(..) a new file and duplicate the line "features <- merge(...)", then
|
||||
# swap base_sms_features(...) for your own function
|
||||
|
||||
source("packrat/init.R")
|
||||
|
||||
library(dplyr)
|
||||
|
||||
filter_by_day_segment <- function(data, day_segment) {
|
||||
if(day_segment %in% c("morning", "afternoon", "evening", "night"))
|
||||
data <- data %>% filter(local_day_segment == day_segment)
|
||||
|
||||
return(data %>% group_by(local_date))
|
||||
}
|
||||
|
||||
compute_sms_feature <- function(sms, metric, day_segment){
|
||||
if(metric == "countmostfrequentcontact"){
|
||||
# Get the most frequent contact
|
||||
sms <- sms %>% group_by(trace) %>%
|
||||
mutate(N=n()) %>%
|
||||
ungroup() %>%
|
||||
filter(N == max(N))
|
||||
|
||||
return(sms %>%
|
||||
filter_by_day_segment(day_segment) %>%
|
||||
summarise(!!paste("sms", sms_type, day_segment, metric, sep = "_") := n()))
|
||||
} else {
|
||||
sms <- sms %>% filter_by_day_segment(day_segment)
|
||||
feature <- switch(metric,
|
||||
"count" = sms %>% summarise(!!paste("sms", sms_type, day_segment, metric, sep = "_") := n()),
|
||||
"distinctcontacts" = sms %>% summarise(!!paste("sms", sms_type, day_segment, metric, sep = "_") := n_distinct(trace)),
|
||||
"timefirstsms" = sms %>% summarise(!!paste("sms", sms_type, day_segment, metric, sep = "_") := first(local_hour) + (first(local_minute)/60)),
|
||||
"timelastsms" = sms %>% summarise(!!paste("sms", sms_type, day_segment, metric, sep = "_") := last(local_hour) + (last(local_minute)/60)))
|
||||
return(feature)
|
||||
}
|
||||
}
|
||||
source("src/features/sms/sms_base.R")
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
|
||||
sms <- read.csv(snakemake@input[[1]])
|
||||
day_segment <- snakemake@params[["day_segment"]]
|
||||
metrics <- snakemake@params[["metrics"]]
|
||||
sms_type <- snakemake@params[["sms_type"]]
|
||||
features = data.frame(local_date = character(), stringsAsFactors = FALSE)
|
||||
features <- data.frame(local_date = character(), stringsAsFactors = FALSE)
|
||||
|
||||
sms <- sms %>% filter(message_type == ifelse(sms_type == "received", "1", "2"))
|
||||
# Compute base SMS features
|
||||
features <- merge(features, base_sms_features(sms, sms_type, day_segment, metrics), by="local_date", all = TRUE)
|
||||
|
||||
for(metric in metrics){
|
||||
feature <- compute_sms_feature(sms, metric, day_segment)
|
||||
features <- merge(features, feature, by="local_date", all = TRUE)
|
||||
}
|
||||
|
||||
if("countmostfrequentcontact" %in% metrics)
|
||||
features <- features %>% mutate_at(vars(contains('countmostfrequentcontact')), funs(ifelse(is.na(.), 0, .)))
|
||||
if(ncol(features) != length(metrics) + 1)
|
||||
stop(paste0("The number of features in the output dataframe (=", ncol(features),") does not match the expected value (=", length(metrics)," + 1). Verify your SMS feature extraction functions"))
|
||||
|
||||
write.csv(features, snakemake@output[[1]], row.names = FALSE)
|
||||
|
|
Loading…
Reference in New Issue