Refactor SMS features

pull/95/head
JulioV 2020-03-31 13:33:03 -04:00
parent e82c9c36b3
commit 09753905f2
2 changed files with 64 additions and 40 deletions

View File

@ -0,0 +1,54 @@
filter_by_day_segment <- function(data, day_segment) {
if(day_segment %in% c("morning", "afternoon", "evening", "night"))
data <- data %>% filter(local_day_segment == day_segment)
return(data)
}
base_sms_features <- function(sms, sms_type, day_segment, requested_features){
# Output dataframe
features = data.frame(local_date = character(), stringsAsFactors = FALSE)
# The name of the features this function can compute
base_features_names <- c("countmostfrequentcontact", "count", "distinctcontacts", "timefirstsms", "timelastsms")
# The subset of requested features this function can compute
features_to_compute <- intersect(base_features_names, requested_features)
# Filter rows that belong to the sms type and day segment of interest
sms <- sms %>% filter(message_type == ifelse(sms_type == "received", "1", "2")) %>%
filter_by_day_segment(day_segment)
# If there are not features or data to work with, return an empty df with appropiate columns names
if(length(features_to_compute) == 0)
return(features)
if(nrow(sms) < 1)
return(cbind(features, read.csv(text = paste(paste("sms", sms_type, day_segment, features_to_compute, sep = "_"), collapse = ","), stringsAsFactors = FALSE)))
for(feature_name in features_to_compute){
if(feature_name == "countmostfrequentcontact"){
# Get the number of messages for the most frequent contact throughout the study
feature <- sms %>% group_by(trace) %>%
mutate(N=n()) %>%
ungroup() %>%
filter(N == max(N)) %>%
group_by(local_date) %>%
summarise(!!paste("sms", sms_type, day_segment, feature_name, sep = "_") := n()) %>%
replace(is.na(.), 0)
features <- merge(features, feature, by="local_date", all = TRUE)
} else {
feature <- sms %>%
group_by(local_date)
feature <- switch(feature_name,
"count" = feature %>% summarise(!!paste("sms", sms_type, day_segment, feature_name, sep = "_") := n()),
"distinctcontacts" = feature %>% summarise(!!paste("sms", sms_type, day_segment, feature_name, sep = "_") := n_distinct(trace)),
"timefirstsms" = feature %>% summarise(!!paste("sms", sms_type, day_segment, feature_name, sep = "_") := first(local_hour) + (first(local_minute)/60)),
"timelastsms" = feature %>% summarise(!!paste("sms", sms_type, day_segment, feature_name, sep = "_") := last(local_hour) + (last(local_minute)/60)))
features <- merge(features, feature, by="local_date", all = TRUE)
}
}
return(features)
}

View File

@ -1,50 +1,20 @@
# If you want to implement extra features, source(..) a new file and duplicate the line "features <- merge(...)", then
# swap base_sms_features(...) for your own function
source("packrat/init.R")
library(dplyr)
filter_by_day_segment <- function(data, day_segment) {
if(day_segment %in% c("morning", "afternoon", "evening", "night"))
data <- data %>% filter(local_day_segment == day_segment)
return(data %>% group_by(local_date))
}
compute_sms_feature <- function(sms, metric, day_segment){
if(metric == "countmostfrequentcontact"){
# Get the most frequent contact
sms <- sms %>% group_by(trace) %>%
mutate(N=n()) %>%
ungroup() %>%
filter(N == max(N))
return(sms %>%
filter_by_day_segment(day_segment) %>%
summarise(!!paste("sms", sms_type, day_segment, metric, sep = "_") := n()))
} else {
sms <- sms %>% filter_by_day_segment(day_segment)
feature <- switch(metric,
"count" = sms %>% summarise(!!paste("sms", sms_type, day_segment, metric, sep = "_") := n()),
"distinctcontacts" = sms %>% summarise(!!paste("sms", sms_type, day_segment, metric, sep = "_") := n_distinct(trace)),
"timefirstsms" = sms %>% summarise(!!paste("sms", sms_type, day_segment, metric, sep = "_") := first(local_hour) + (first(local_minute)/60)),
"timelastsms" = sms %>% summarise(!!paste("sms", sms_type, day_segment, metric, sep = "_") := last(local_hour) + (last(local_minute)/60)))
return(feature)
}
}
source("src/features/sms/sms_base.R")
library(dplyr, warn.conflicts = FALSE)
sms <- read.csv(snakemake@input[[1]])
day_segment <- snakemake@params[["day_segment"]]
metrics <- snakemake@params[["metrics"]]
sms_type <- snakemake@params[["sms_type"]]
features = data.frame(local_date = character(), stringsAsFactors = FALSE)
features <- data.frame(local_date = character(), stringsAsFactors = FALSE)
sms <- sms %>% filter(message_type == ifelse(sms_type == "received", "1", "2"))
# Compute base SMS features
features <- merge(features, base_sms_features(sms, sms_type, day_segment, metrics), by="local_date", all = TRUE)
for(metric in metrics){
feature <- compute_sms_feature(sms, metric, day_segment)
features <- merge(features, feature, by="local_date", all = TRUE)
}
if("countmostfrequentcontact" %in% metrics)
features <- features %>% mutate_at(vars(contains('countmostfrequentcontact')), funs(ifelse(is.na(.), 0, .)))
if(ncol(features) != length(metrics) + 1)
stop(paste0("The number of features in the output dataframe (=", ncol(features),") does not match the expected value (=", length(metrics)," + 1). Verify your SMS feature extraction functions"))
write.csv(features, snakemake@output[[1]], row.names = FALSE)