Change own to custom categories name
parent
e74c745f86
commit
065a926a87
|
@ -113,7 +113,7 @@ PHONE_APPLICATIONS_FOREGROUND:
|
|||
COMPUTE: False
|
||||
INCLUDE_EPISODE_FEATURES: False
|
||||
SINGLE_CATEGORIES: ["all", "email"]
|
||||
OWN_CATEGORIES:
|
||||
CUSTOM_CATEGORIES:
|
||||
social_media: ['com.google.android.youtube','com.snapchat.android','com.instagram.android','com.zhiliaoapp.musically','com.facebook.katana']
|
||||
dating: ['com.tinder','com.relance.happycouple','com.kiwi.joyride']
|
||||
MULTIPLE_CATEGORIES:
|
||||
|
|
|
@ -36,7 +36,7 @@ Parameters description for `[PHONE_APPLICATIONS_FOREGROUND][PROVIDERS][RAPIDS]`:
|
|||
|`[INCLUDE_EPISODE_FEATURES]`| Set to `True` to extract application episode features as well from the `RAPIDS` provider|
|
||||
|`[FEATURES]` | Features to be computed, see table below
|
||||
|`[SINGLE_CATEGORIES]` | An array of app categories to be *included* in the feature extraction computation. The special keyword `all` represents a category with all the apps from each participant. By default we use the category catalogue pointed by `[APPLICATION_CATEGORIES][CATALOGUE_FILE]` (see the Sensor parameters description table above)
|
||||
|`[OWN_CATEGORIES]` | An array of collections representing your own app categories. They key of each element is the name of the in-house category and the value is an array of the package names (apps) included in that category.
|
||||
|`[CUSTOM_CATEGORIES]` | An array of collections representing your own app categories. They key of each element is the name of the in-house category and the value is an array of the package names (apps) included in that category.
|
||||
|`[MULTIPLE_CATEGORIES]` | An array of collections representing meta-categories (a group of categories). They key of each element is the name of the `meta-category` and the value is an array of member app categories. By default we use the category catalogue pointed by `[APPLICATION_CATEGORIES][CATALOGUE_FILE]` (see the Sensor parameters description table above)
|
||||
|`[SINGLE_APPS]` | An array of apps to be *included* in the feature extraction computation. Use their package name (e.g. `com.google.android.youtube`) or the reserved keyword `top1global` (the most used app by a participant over the whole monitoring study)
|
||||
|`[EXCLUDED_CATEGORIES]` | An array of app categories to be *excluded* from the feature extraction computation. By default we use the category catalogue pointed by `[APPLICATION_CATEGORIES][CATALOGUE_FILE]` (see the Sensor parameters description table above)
|
||||
|
|
|
@ -68,11 +68,11 @@ def process_app_features(data, requested_features, time_segment, provider, filte
|
|||
for mcategory_name, mcategory_content in provider["MULTIPLE_CATEGORIES"].items():
|
||||
if len(mcategory_content) > 0 and mcategory_name not in excluded_categories:
|
||||
multiple_categories[mcategory_name] = mcategory_content
|
||||
own_categories = {}
|
||||
if isinstance(provider["OWN_CATEGORIES"], dict):
|
||||
for owncategory_name, owncategory_content in provider["OWN_CATEGORIES"].items():
|
||||
custom_categories = {}
|
||||
if isinstance(provider["CUSTOM_CATEGORIES"], dict):
|
||||
for owncategory_name, owncategory_content in provider["CUSTOM_CATEGORIES"].items():
|
||||
if len(owncategory_content) > 0 and owncategory_name not in excluded_categories:
|
||||
own_categories[owncategory_name] = owncategory_content
|
||||
custom_categories[owncategory_name] = owncategory_content
|
||||
single_apps = provider["SINGLE_APPS"]
|
||||
single_categories = list(set(single_categories) - set(excluded_categories))
|
||||
single_apps = list(set(single_apps) - set(excluded_apps))
|
||||
|
@ -84,7 +84,7 @@ def process_app_features(data, requested_features, time_segment, provider, filte
|
|||
# exclude apps in the excluded_apps list
|
||||
data = data[~data["package_name"].isin(excluded_apps)]
|
||||
|
||||
features = pd.DataFrame(columns=["local_segment"] + ["".join(feature) for feature in itertools.product(requested_features, single_categories + list(own_categories.keys()) + list(multiple_categories.keys()) + single_apps)])
|
||||
features = pd.DataFrame(columns=["local_segment"] + ["".join(feature) for feature in itertools.product(requested_features, single_categories + list(custom_categories.keys()) + list(multiple_categories.keys()) + single_apps)])
|
||||
if not data.empty:
|
||||
# deep copy the data for the top1global computation
|
||||
data_global = data.copy()
|
||||
|
@ -102,7 +102,7 @@ def process_app_features(data, requested_features, time_segment, provider, filte
|
|||
filtered_data = data[data["genre"].isin([sc])]
|
||||
features = compute_features(filtered_data, sc, requested_features, features, time_segment)
|
||||
# own categories
|
||||
for owncategory_name, owncategory_content in own_categories.items():
|
||||
for owncategory_name, owncategory_content in custom_categories.items():
|
||||
filtered_data = data[data["package_name"].isin(owncategory_content)]
|
||||
features = compute_features(filtered_data, owncategory_name, requested_features, features, time_segment)
|
||||
# multiple categories
|
||||
|
@ -142,5 +142,5 @@ def rapids_features(sensor_data_files, time_segment, provider, filter_data_by_se
|
|||
episodes_features = process_app_features(episode_data, requested_episodes_features, time_segment, provider, filter_data_by_segment)
|
||||
|
||||
features = pd.merge(episodes_features, features, how='outer', on='local_segment')
|
||||
|
||||
|
||||
return features
|
|
@ -346,7 +346,7 @@ properties:
|
|||
uniqueItems: True
|
||||
items:
|
||||
type: string
|
||||
OWN_CATEGORIES:
|
||||
CUSTOM_CATEGORIES:
|
||||
type: ["null", object]
|
||||
additionalProperties:
|
||||
type: array
|
||||
|
|
Loading…
Reference in New Issue