diff --git a/config.yaml b/config.yaml index b609897c..72142b91 100644 --- a/config.yaml +++ b/config.yaml @@ -26,7 +26,7 @@ TIME_SEGMENTS: &time_segments INCLUDE_PAST_PERIODIC_SEGMENTS: TRUE # Only relevant if TYPE=PERIODIC, see docs TAILORED_EVENTS: # Only relevant if TYPE=EVENT COMPUTE: True - PARAMETER_ONE: "something" + TARGETS_METHOD: "none" # See https://www.rapids.science/latest/setup/configuration/#timezone-of-your-study TIMEZONE: diff --git a/src/features/phone_esm/straw/process_user_event_related_segments.py b/src/features/phone_esm/straw/process_user_event_related_segments.py index 13737b9c..7418ce12 100644 --- a/src/features/phone_esm/straw/process_user_event_related_segments.py +++ b/src/features/phone_esm/straw/process_user_event_related_segments.py @@ -28,17 +28,13 @@ def extract_ers_from_file(esm_df, device_id): pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) - # extracted_ers = pd.DataFrame(columns=["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"]) + with open('config.yaml', 'r') as stream: + config = yaml.load(stream, Loader=yaml.FullLoader) + + targets_method = config["TIME_SEGMENTS"]["TAILORED_EVENTS"]["TARGETS_METHOD"] - # esm_df = clean_up_esm(preprocess_esm(esm_df)) esm_preprocessed = clean_up_esm(preprocess_esm(esm_df)) - - # Take only during work sessions - # during_work = esm_df[esm_df["esm_trigger"].str.contains("during_work", na=False)] - # esm_trigger_group = esm_df.groupby("esm_session").agg(pd.Series.mode)['esm_trigger'] # Get most frequent esm_trigger within particular session - # esm_filtered_sessions = list(esm_trigger_group[esm_trigger_group == 'during_work'].index) # Take only sessions that contains during work - # Take only ema_completed sessions responses classified = classify_sessions_by_completion_time(esm_preprocessed) esm_filtered_sessions = classified[classified["session_response"] == 'ema_completed'].reset_index()['esm_session']