Refactor the function to fetch provider features
parent
b0f1477d7e
commit
011b9736d5
|
@ -64,7 +64,7 @@ rule ios_activity_recognition_deltas:
|
||||||
|
|
||||||
rule locations_python_features:
|
rule locations_python_features:
|
||||||
input:
|
input:
|
||||||
location_data = expand("data/raw/{{pid}}/{sensor}_processed_{locations_to_use}.csv", sensor=config["LOCATIONS"]["DB_TABLE"], locations_to_use=config["LOCATIONS"]["LOCATIONS_TO_USE"]),
|
sensor_data = expand("data/raw/{{pid}}/{sensor}_processed_{locations_to_use}.csv", sensor=config["LOCATIONS"]["DB_TABLE"], locations_to_use=config["LOCATIONS"]["LOCATIONS_TO_USE"]),
|
||||||
day_segments_labels = "data/interim/day_segments_labels.csv"
|
day_segments_labels = "data/interim/day_segments_labels.csv"
|
||||||
params:
|
params:
|
||||||
provider = lambda wildcards: config["LOCATIONS"]["PROVIDERS"][wildcards.provider_key],
|
provider = lambda wildcards: config["LOCATIONS"]["PROVIDERS"][wildcards.provider_key],
|
||||||
|
@ -72,11 +72,11 @@ rule locations_python_features:
|
||||||
output:
|
output:
|
||||||
"data/interim/{pid}/locations_features/locations_python_{provider_key}.csv"
|
"data/interim/{pid}/locations_features/locations_python_{provider_key}.csv"
|
||||||
script:
|
script:
|
||||||
"../src/features/location/locations_entry.py"
|
"../src/features/locations/locations_entry.py"
|
||||||
|
|
||||||
rule locations_r_features:
|
rule locations_r_features:
|
||||||
input:
|
input:
|
||||||
location_data = expand("data/raw/{{pid}}/{sensor}_processed_{locations_to_use}.csv", sensor=config["LOCATIONS"]["DB_TABLE"], locations_to_use=config["LOCATIONS"]["LOCATIONS_TO_USE"]),
|
sensor_data = expand("data/raw/{{pid}}/{sensor}_processed_{locations_to_use}.csv", sensor=config["LOCATIONS"]["DB_TABLE"], locations_to_use=config["LOCATIONS"]["LOCATIONS_TO_USE"]),
|
||||||
day_segments_labels = "data/interim/day_segments_labels.csv"
|
day_segments_labels = "data/interim/day_segments_labels.csv"
|
||||||
params:
|
params:
|
||||||
provider = lambda wildcards: config["LOCATIONS"]["PROVIDERS"][wildcards.provider_key],
|
provider = lambda wildcards: config["LOCATIONS"]["PROVIDERS"][wildcards.provider_key],
|
||||||
|
@ -84,7 +84,7 @@ rule locations_r_features:
|
||||||
output:
|
output:
|
||||||
"data/interim/{pid}/locations_features/locations_r_{provider_key}.csv"
|
"data/interim/{pid}/locations_features/locations_r_{provider_key}.csv"
|
||||||
script:
|
script:
|
||||||
"../src/features/location/locations_entry.R"
|
"../src/features/locations/locations_entry.R"
|
||||||
|
|
||||||
rule bluetooth_features:
|
rule bluetooth_features:
|
||||||
input:
|
input:
|
||||||
|
|
|
@ -1,78 +0,0 @@
|
||||||
library('tidyr')
|
|
||||||
library('stringr')
|
|
||||||
library('entropy')
|
|
||||||
|
|
||||||
Mode <- function(v) {
|
|
||||||
uniqv <- unique(v)
|
|
||||||
uniqv[which.max(tabulate(match(v, uniqv)))]
|
|
||||||
}
|
|
||||||
|
|
||||||
base_call_features <- function(calls, call_type, day_segment, requested_features){
|
|
||||||
# Output dataframe
|
|
||||||
features = data.frame(local_segment = character(), stringsAsFactors = FALSE)
|
|
||||||
|
|
||||||
# The name of the features this function can compute
|
|
||||||
base_features_names <- c("count", "distinctcontacts", "meanduration", "sumduration", "minduration", "maxduration", "stdduration", "modeduration", "entropyduration", "timefirstcall", "timelastcall", "countmostfrequentcontact")
|
|
||||||
|
|
||||||
# The subset of requested features this function can compute
|
|
||||||
features_to_compute <- intersect(base_features_names, requested_features)
|
|
||||||
|
|
||||||
# Filter rows that belong to the calls type and day segment of interest
|
|
||||||
call_type_label = ifelse(call_type == "incoming", "1", ifelse(call_type == "outgoing", "2", ifelse(call_type == "missed", "3", NA)))
|
|
||||||
if(is.na(call_type_label))
|
|
||||||
stop(paste("Call type can online be incoming, outgoing or missed but instead you typed: ", call_type))
|
|
||||||
|
|
||||||
# Filter the rows that belong to day_segment, and put the segment full name in a new column for grouping
|
|
||||||
date_regex = "[0-9]{4}[\\-|\\/][0-9]{2}[\\-|\\/][0-9]{2}"
|
|
||||||
hour_regex = "[0-9]{2}:[0-9]{2}:[0-9]{2}"
|
|
||||||
calls <- calls %>%
|
|
||||||
filter(call_type == call_type_label) %>%
|
|
||||||
filter(grepl(paste0("\\[", day_segment, "#"),assigned_segments)) %>%
|
|
||||||
mutate(local_segment = str_extract(assigned_segments, paste0("\\[", day_segment, "#", date_regex, "#", hour_regex, "#", date_regex, "#", hour_regex, "\\]")),
|
|
||||||
local_segment = str_sub(local_segment, 2, -2)) # get rid of first and last character([])
|
|
||||||
|
|
||||||
# If there are not features or data to work with, return an empty df with appropiate columns names
|
|
||||||
if(length(features_to_compute) == 0)
|
|
||||||
return(features)
|
|
||||||
if(nrow(calls) < 1)
|
|
||||||
return(cbind(features, read.csv(text = paste(paste("call", call_type, features_to_compute, sep = "_"), collapse = ","), stringsAsFactors = FALSE)))
|
|
||||||
|
|
||||||
for(feature_name in features_to_compute){
|
|
||||||
if(feature_name == "countmostfrequentcontact"){
|
|
||||||
# Get the number of messages for the most frequent contact throughout the study
|
|
||||||
mostfrequentcontact <- calls %>%
|
|
||||||
group_by(trace) %>%
|
|
||||||
mutate(N=n()) %>%
|
|
||||||
ungroup() %>%
|
|
||||||
filter(N == max(N)) %>%
|
|
||||||
head(1) %>% # if there are multiple contacts with the same amount of messages pick the first one only
|
|
||||||
pull(trace)
|
|
||||||
feature <- calls %>%
|
|
||||||
filter(trace == mostfrequentcontact) %>%
|
|
||||||
group_by(local_segment) %>%
|
|
||||||
summarise(!!paste("call", call_type, feature_name, sep = "_") := n()) %>%
|
|
||||||
replace(is.na(.), 0)
|
|
||||||
features <- merge(features, feature, by="local_segment", all = TRUE)
|
|
||||||
} else {
|
|
||||||
feature <- calls %>%
|
|
||||||
group_by(local_segment)
|
|
||||||
|
|
||||||
feature <- switch(feature_name,
|
|
||||||
"count" = feature %>% summarise(!!paste("call", call_type, feature_name, sep = "_") := n()),
|
|
||||||
"distinctcontacts" = feature %>% summarise(!!paste("call", call_type, feature_name, sep = "_") := n_distinct(trace)),
|
|
||||||
"meanduration" = feature %>% summarise(!!paste("call", call_type, feature_name, sep = "_") := mean(call_duration)),
|
|
||||||
"sumduration" = feature %>% summarise(!!paste("call", call_type, feature_name, sep = "_") := sum(call_duration)),
|
|
||||||
"minduration" = feature %>% summarise(!!paste("call", call_type, feature_name, sep = "_") := min(call_duration)),
|
|
||||||
"maxduration" = feature %>% summarise(!!paste("call", call_type, feature_name, sep = "_") := max(call_duration)),
|
|
||||||
"stdduration" = feature %>% summarise(!!paste("call", call_type, feature_name, sep = "_") := sd(call_duration)),
|
|
||||||
"modeduration" = feature %>% summarise(!!paste("call", call_type, feature_name, sep = "_") := Mode(call_duration)),
|
|
||||||
"entropyduration" = feature %>% summarise(!!paste("call", call_type, feature_name, sep = "_") := entropy.MillerMadow(call_duration)),
|
|
||||||
"timefirstcall" = feature %>% summarise(!!paste("call", call_type, feature_name, sep = "_") := first(local_hour) * 60 + first(local_minute)),
|
|
||||||
"timelastcall" = feature %>% summarise(!!paste("call", call_type, feature_name, sep = "_") := last(local_hour) * 60 + last(local_minute)))
|
|
||||||
|
|
||||||
features <- merge(features, feature, by="local_segment", all = TRUE)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
features <- features %>% mutate_at(vars(contains("countmostfrequentcontact")), list( ~ replace_na(., 0)))
|
|
||||||
return(features)
|
|
||||||
}
|
|
|
@ -1,44 +0,0 @@
|
||||||
source("renv/activate.R")
|
|
||||||
source("src/features/utils/utils.R")
|
|
||||||
library("dplyr")
|
|
||||||
library("stringr")
|
|
||||||
library("tidyr")
|
|
||||||
|
|
||||||
location_data <- read.csv(snakemake@input[["location_data"]], stringsAsFactors = FALSE)
|
|
||||||
day_segments_labels <- read.csv(snakemake@input[["day_segments_labels"]], stringsAsFactors = FALSE)
|
|
||||||
provider <- snakemake@params["provider"][["provider"]]
|
|
||||||
provider_key <- snakemake@params["provider_key"]
|
|
||||||
|
|
||||||
location_features <- data.frame(local_segment = character(), stringsAsFactors = FALSE)
|
|
||||||
|
|
||||||
if(!"FEATURES" %in% names(provider))
|
|
||||||
stop(paste0("Provider config[LOCATION][PROVIDERS][", provider_key,"] is missing a FEATURES attribute in config.yaml"))
|
|
||||||
|
|
||||||
if(provider[["COMPUTE"]] == TRUE){
|
|
||||||
code_path <- paste0("src/features/location/", provider[["SRC_FOLDER"]], "/main.R")
|
|
||||||
source(code_path)
|
|
||||||
features_function <- match.fun(paste0(provider[["SRC_FOLDER"]], "_location_features"))
|
|
||||||
day_segments <- day_segments_labels %>% pull(label)
|
|
||||||
for (day_segment in day_segments){
|
|
||||||
print(paste(rapids_log_tag,"Processing", provider_key, day_segment))
|
|
||||||
|
|
||||||
features <- features_function(location_data, day_segment, provider)
|
|
||||||
|
|
||||||
# Check all features names contain the provider key so they are unique
|
|
||||||
features_names <- colnames(features %>% select(-local_segment))
|
|
||||||
if(any(!grepl(paste0(".*(",str_to_lower(provider_key),").*"), features_names)))
|
|
||||||
stop(paste("The name of all location features of", provider_key," must contain its name in lower case but the following don't [", paste(features_names[!grepl(paste0(".*(",str_to_lower(provider_key),").*"), features_names)], collapse = ", "), "]"))
|
|
||||||
|
|
||||||
location_features <- merge(location_features, features, all = TRUE)
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for(feature in provider[["FEATURES"]])
|
|
||||||
location_features[,feature] <- NA
|
|
||||||
}
|
|
||||||
|
|
||||||
location_features <- location_features %>% separate(col = local_segment,
|
|
||||||
into = c("local_segment_label", "local_start_date", "local_start_time", "local_end_date", "local_end_time"),
|
|
||||||
sep = "#",
|
|
||||||
remove = FALSE)
|
|
||||||
|
|
||||||
write.csv(location_features, snakemake@output[[1]], row.names = FALSE)
|
|
|
@ -1,39 +0,0 @@
|
||||||
import pandas as pd
|
|
||||||
from importlib import import_module, util
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
# import filter_data_by_segment from src/features/utils/utils.py
|
|
||||||
spec = util.spec_from_file_location("util", str(Path(snakemake.scriptdir).parent / "utils" / "utils.py"))
|
|
||||||
mod = util.module_from_spec(spec)
|
|
||||||
spec.loader.exec_module(mod)
|
|
||||||
filter_data_by_segment = getattr(mod, "filter_data_by_segment")
|
|
||||||
rapids_log_tag = getattr(mod, "rapids_log_tag")
|
|
||||||
|
|
||||||
location_data = pd.read_csv(snakemake.input["location_data"][0])
|
|
||||||
day_segments_labels = pd.read_csv(snakemake.input["day_segments_labels"], header=0)
|
|
||||||
mypath = snakemake.params["mypath"]
|
|
||||||
provider = snakemake.params["provider"]
|
|
||||||
provider_key = snakemake.params["provider_key"]
|
|
||||||
location_features = pd.DataFrame(columns=["local_segment"])
|
|
||||||
|
|
||||||
if "FEATURES" not in provider:
|
|
||||||
raise ValueError("Provider config[LOCATION][PROVIDERS][{}] is missing a FEATURES attribute in config.yaml".format(provider_key))
|
|
||||||
|
|
||||||
if provider["COMPUTE"] == True:
|
|
||||||
code_path = provider["SRC_FOLDER"] + ".main"
|
|
||||||
feature_module = import_module(code_path)
|
|
||||||
feature_function = getattr(feature_module, provider["SRC_FOLDER"] + "_location_features")
|
|
||||||
|
|
||||||
for day_segment in day_segments_labels["label"]:
|
|
||||||
print("{} Processing {} {}".format(rapids_log_tag, provider_key, day_segment))
|
|
||||||
features = feature_function(location_data, day_segment, provider, filter_data_by_segment=filter_data_by_segment)
|
|
||||||
location_features = location_features.merge(features, how="outer")
|
|
||||||
else:
|
|
||||||
for feature in provider["FEATURES"]:
|
|
||||||
location_features[feature] = None
|
|
||||||
|
|
||||||
segment_colums = pd.DataFrame()
|
|
||||||
segment_colums[["local_segment_label", "local_start_date", "local_start_time", "local_end_date", "local_end_time"]] = location_features["local_segment"].str.split(pat="#", expand=True)
|
|
||||||
for i in range(segment_colums.shape[1]):
|
|
||||||
location_features.insert(1 + i, segment_colums.columns[i], segment_colums[segment_colums.columns[i]])
|
|
||||||
location_features.to_csv(snakemake.output[0], index=False)
|
|
|
@ -3,7 +3,7 @@ library("dplyr")
|
||||||
library("stringr")
|
library("stringr")
|
||||||
|
|
||||||
# Load Ian Barnett's code. Taken from https://scholar.harvard.edu/ibarnett/software/gpsmobility
|
# Load Ian Barnett's code. Taken from https://scholar.harvard.edu/ibarnett/software/gpsmobility
|
||||||
file.sources = list.files(c("src/features/location/barnett/library"), pattern="*.R$", full.names=TRUE, ignore.case=TRUE)
|
file.sources = list.files(c("src/features/locations/barnett/library"), pattern="*.R$", full.names=TRUE, ignore.case=TRUE)
|
||||||
sapply(file.sources,source,.GlobalEnv)
|
sapply(file.sources,source,.GlobalEnv)
|
||||||
|
|
||||||
create_empty_file <- function(requested_features){
|
create_empty_file <- function(requested_features){
|
||||||
|
@ -27,7 +27,7 @@ create_empty_file <- function(requested_features){
|
||||||
) %>% select(all_of(requested_features)))
|
) %>% select(all_of(requested_features)))
|
||||||
}
|
}
|
||||||
|
|
||||||
barnett_location_features <- function(location_data, day_segment, params){
|
barnett_features <- function(location_data, day_segment, params){
|
||||||
location_features <- NULL
|
location_features <- NULL
|
||||||
location <- location_data
|
location <- location_data
|
||||||
accuracy_limit <- params[["ACCURACY_LIMIT"]]
|
accuracy_limit <- params[["ACCURACY_LIMIT"]]
|
|
@ -4,7 +4,7 @@ from astropy.timeseries import LombScargle
|
||||||
from sklearn.cluster import DBSCAN
|
from sklearn.cluster import DBSCAN
|
||||||
from math import radians, cos, sin, asin, sqrt
|
from math import radians, cos, sin, asin, sqrt
|
||||||
|
|
||||||
def doryab_location_features(location_data, day_segment, params, filter_data_by_segment, *args, **kwargs):
|
def doryab_features(location_data, day_segment, params, filter_data_by_segment, *args, **kwargs):
|
||||||
requested_features = params["FEATURES"]
|
requested_features = params["FEATURES"]
|
||||||
dbscan_eps = params["DBSCAN_EPS"]
|
dbscan_eps = params["DBSCAN_EPS"]
|
||||||
dbscan_minsamples = params["DBSCAN_MINSAMPLES"]
|
dbscan_minsamples = params["DBSCAN_MINSAMPLES"]
|
|
@ -0,0 +1,13 @@
|
||||||
|
source("renv/activate.R")
|
||||||
|
source("src/features/utils/utils.R")
|
||||||
|
library("dplyr")
|
||||||
|
library("tidyr")
|
||||||
|
|
||||||
|
sensor_data_file <- snakemake@input[["sensor_data"]]
|
||||||
|
day_segments_file <- snakemake@input[["day_segments_labels"]]
|
||||||
|
provider <- snakemake@params["provider"][["provider"]]
|
||||||
|
provider_key <- snakemake@params["provider_key"]
|
||||||
|
|
||||||
|
sensor_features <- fetch_provider_features(provider, provider_key, "locations", sensor_data_file, day_segments_file)
|
||||||
|
|
||||||
|
write.csv(sensor_features, snakemake@output[[1]], row.names = FALSE)
|
|
@ -0,0 +1,18 @@
|
||||||
|
import pandas as pd
|
||||||
|
from importlib import import_module, util
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# import fetch_provider_features from src/features/utils/utils.py
|
||||||
|
spec = util.spec_from_file_location("util", str(Path(snakemake.scriptdir).parent / "utils" / "utils.py"))
|
||||||
|
mod = util.module_from_spec(spec)
|
||||||
|
spec.loader.exec_module(mod)
|
||||||
|
fetch_provider_features = getattr(mod, "fetch_provider_features")
|
||||||
|
|
||||||
|
sensor_data_file = snakemake.input["sensor_data"][0]
|
||||||
|
day_segments_file = snakemake.input["day_segments_labels"]
|
||||||
|
provider = snakemake.params["provider"]
|
||||||
|
provider_key = snakemake.params["provider_key"]
|
||||||
|
|
||||||
|
sensor_features = fetch_provider_features(provider, provider_key, "locations", sensor_data_file, day_segments_file)
|
||||||
|
|
||||||
|
sensor_features.to_csv(snakemake.output[0], index=False)
|
|
@ -1,4 +1,7 @@
|
||||||
library("stringr")
|
library("stringr")
|
||||||
|
|
||||||
|
rapids_log_tag <- "RAPIDS:"
|
||||||
|
|
||||||
filter_data_by_segment <- function(data, day_segment){
|
filter_data_by_segment <- function(data, day_segment){
|
||||||
# Filter the rows that belong to day_segment, and put the segment full name in a new column for grouping
|
# Filter the rows that belong to day_segment, and put the segment full name in a new column for grouping
|
||||||
date_regex = "[0-9]{4}[\\-|\\/][0-9]{2}[\\-|\\/][0-9]{2}"
|
date_regex = "[0-9]{4}[\\-|\\/][0-9]{2}[\\-|\\/][0-9]{2}"
|
||||||
|
@ -9,4 +12,41 @@ filter_data_by_segment <- function(data, day_segment){
|
||||||
local_segment = str_sub(local_segment, 2, -2)) # get rid of first and last character([])
|
local_segment = str_sub(local_segment, 2, -2)) # get rid of first and last character([])
|
||||||
return(data)
|
return(data)
|
||||||
}
|
}
|
||||||
rapids_log_tag <- "RAPIDS:"
|
|
||||||
|
fetch_provider_features <- function(provider, provider_key, config_key, sensor_data_file, day_segments_file){
|
||||||
|
sensor_features <- data.frame(local_segment = character(), stringsAsFactors = FALSE)
|
||||||
|
|
||||||
|
sensor_data <- read.csv(sensor_data_file, stringsAsFactors = FALSE)
|
||||||
|
day_segments_labels <- read.csv(day_segments_file, stringsAsFactors = FALSE)
|
||||||
|
|
||||||
|
if(!"FEATURES" %in% names(provider))
|
||||||
|
stop(paste0("Provider config[CALLS][PROVIDERS][", provider_key,"] is missing a FEATURES attribute in config.yaml"))
|
||||||
|
|
||||||
|
if(provider[["COMPUTE"]] == TRUE){
|
||||||
|
code_path <- paste0("src/features/", config_key,"/", provider[["SRC_FOLDER"]], "/main.R")
|
||||||
|
source(code_path)
|
||||||
|
features_function <- match.fun(paste0(provider[["SRC_FOLDER"]], "_features"))
|
||||||
|
day_segments <- day_segments_labels %>% pull(label)
|
||||||
|
for (day_segment in day_segments){
|
||||||
|
print(paste(rapids_log_tag,"Processing", config_key, provider_key, day_segment))
|
||||||
|
|
||||||
|
features <- features_function(sensor_data, day_segment, provider)
|
||||||
|
|
||||||
|
# Check all features names contain the provider key so they are unique
|
||||||
|
features_names <- colnames(features %>% select(-local_segment))
|
||||||
|
if(any(!grepl(paste0(".*(",str_to_lower(provider_key),").*"), features_names)))
|
||||||
|
stop(paste("The name of all calls features of", provider_key," must contain its name in lower case but the following don't [", paste(features_names[!grepl(paste0(".*(",str_to_lower(provider_key),").*"), features_names)], collapse = ", "), "]"))
|
||||||
|
|
||||||
|
sensor_features <- merge(sensor_features, features, all = TRUE)
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for(feature in provider[["FEATURES"]])
|
||||||
|
sensor_features[,feature] <- NA
|
||||||
|
}
|
||||||
|
|
||||||
|
sensor_features <- sensor_features %>% separate(col = local_segment,
|
||||||
|
into = c("local_segment_label", "local_start_date", "local_start_time", "local_end_date", "local_end_time"),
|
||||||
|
sep = "#",
|
||||||
|
remove = FALSE)
|
||||||
|
return(sensor_features)
|
||||||
|
}
|
|
@ -1,3 +1,4 @@
|
||||||
|
rapids_log_tag = "RAPIDS:"
|
||||||
|
|
||||||
def filter_data_by_segment(data, day_segment):
|
def filter_data_by_segment(data, day_segment):
|
||||||
date_regex = "[0-9]{4}[\-|\/][0-9]{2}[\-|\/][0-9]{2}"
|
date_regex = "[0-9]{4}[\-|\/][0-9]{2}[\-|\/][0-9]{2}"
|
||||||
|
@ -6,4 +7,36 @@ def filter_data_by_segment(data, day_segment):
|
||||||
data["local_segment"] = data["assigned_segments"].str.extract(segment_regex, expand=True)
|
data["local_segment"] = data["assigned_segments"].str.extract(segment_regex, expand=True)
|
||||||
return(data.dropna(subset = ["local_segment"]))
|
return(data.dropna(subset = ["local_segment"]))
|
||||||
|
|
||||||
rapids_log_tag = "RAPIDS:"
|
def fetch_provider_features(provider, provider_key, config_key, sensor_data_file, day_segments_file):
|
||||||
|
import pandas as pd
|
||||||
|
from importlib import import_module, util
|
||||||
|
|
||||||
|
sensor_features = pd.DataFrame(columns=["local_segment"])
|
||||||
|
sensor_data = pd.read_csv(sensor_data_file)
|
||||||
|
day_segments_labels = pd.read_csv(day_segments_file, header=0)
|
||||||
|
if "FEATURES" not in provider:
|
||||||
|
raise ValueError("Provider config[{}][PROVIDERS][{}] is missing a FEATURES attribute in config.yaml".format(config_key.upper(), provider_key))
|
||||||
|
|
||||||
|
if provider["COMPUTE"] == True:
|
||||||
|
code_path = provider["SRC_FOLDER"] + ".main"
|
||||||
|
feature_module = import_module(code_path)
|
||||||
|
feature_function = getattr(feature_module, provider["SRC_FOLDER"] + "_features")
|
||||||
|
|
||||||
|
for day_segment in day_segments_labels["label"]:
|
||||||
|
print("{} Processing {} {} {}".format(rapids_log_tag, config_key, provider_key, day_segment))
|
||||||
|
print("---")
|
||||||
|
features = feature_function(sensor_data, day_segment, provider, filter_data_by_segment=filter_data_by_segment)
|
||||||
|
print("2")
|
||||||
|
sensor_features = sensor_features.merge(features, how="outer")
|
||||||
|
else:
|
||||||
|
for feature in provider["FEATURES"]:
|
||||||
|
sensor_features[feature] = None
|
||||||
|
print("3")
|
||||||
|
segment_colums = pd.DataFrame()
|
||||||
|
split_segemnt_columns = sensor_features["local_segment"].str.split(pat="#", expand=True)
|
||||||
|
new_segment_columns = split_segemnt_columns if split_segemnt_columns.shape[1] == 5 else pd.DataFrame(columns=["local_segment_label", "local_start_date", "local_start_time", "local_end_date", "local_end_time"])
|
||||||
|
segment_colums[["local_segment_label", "local_start_date", "local_start_time", "local_end_date", "local_end_time"]] = new_segment_columns
|
||||||
|
for i in range(segment_colums.shape[1]):
|
||||||
|
sensor_features.insert(1 + i, segment_colums.columns[i], segment_colums[segment_colums.columns[i]])
|
||||||
|
|
||||||
|
return sensor_features
|
Loading…
Reference in New Issue