Add wifi features

pull/95/head
JulioV 2020-04-13 13:24:52 -04:00
parent 8cc93c8791
commit 010114c1aa
4 changed files with 59 additions and 0 deletions

View File

@ -67,6 +67,9 @@ rule all:
expand("data/processed/{pid}/fitbit_step_{day_segment}.csv", expand("data/processed/{pid}/fitbit_step_{day_segment}.csv",
pid = config["PIDS"], pid = config["PIDS"],
day_segment = config["STEP"]["DAY_SEGMENTS"]), day_segment = config["STEP"]["DAY_SEGMENTS"]),
expand("data/processed/{pid}/wifi_{segment}.csv",
pid=config["PIDS"],
segment = config["WIFI"]["DAY_SEGMENTS"]),
# Models # Models
expand("data/processed/{pid}/metrics_for_individual_model/{source}_{day_segment}_original.csv", expand("data/processed/{pid}/metrics_for_individual_model/{source}_{day_segment}_original.csv",
pid = config["PIDS"], pid = config["PIDS"],

View File

@ -124,6 +124,10 @@ STEP:
THRESHOLD_ACTIVE_BOUT: 10 # steps THRESHOLD_ACTIVE_BOUT: 10 # steps
INCLUDE_ZERO_STEP_ROWS: True INCLUDE_ZERO_STEP_ROWS: True
WIFI:
DAY_SEGMENTS: *day_segments
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
METRICS_FOR_ANALYSIS: METRICS_FOR_ANALYSIS:
GROUNDTRUTH_TABLE: participant_info GROUNDTRUTH_TABLE: participant_info
SOURCES: &sources ["phone_metrics", "fitbit_metrics", "phone_fitbit_metrics"] SOURCES: &sources ["phone_metrics", "fitbit_metrics", "phone_fitbit_metrics"]

View File

@ -174,3 +174,14 @@ rule fitbit_step_features:
"data/processed/{pid}/fitbit_step_{day_segment}.csv" "data/processed/{pid}/fitbit_step_{day_segment}.csv"
script: script:
"../src/features/fitbit_step_features.py" "../src/features/fitbit_step_features.py"
rule wifi_features:
input:
"data/raw/{pid}/wifi_with_datetime.csv"
params:
day_segment = "{day_segment}",
features = config["WIFI"]["FEATURES"]
output:
"data/processed/{pid}/wifi_{day_segment}.csv"
script:
"../src/features/wifi_features.R"

View File

@ -0,0 +1,41 @@
source("packrat/init.R")
library(dplyr)
filter_by_day_segment <- function(data, day_segment) {
if(day_segment %in% c("morning", "afternoon", "evening", "night"))
data <- data %>% filter(local_day_segment == day_segment)
return(data %>% group_by(local_date))
}
compute_wifi_feature <- function(data, feature, day_segment){
if(feature %in% c("countscans", "uniquedevices")){
data <- data %>% filter_by_day_segment(day_segment)
data <- switch(feature,
"countscans" = data %>% summarise(!!paste("wifi", day_segment, feature, sep = "_") := n()),
"uniquedevices" = data %>% summarise(!!paste("wifi", day_segment, feature, sep = "_") := n_distinct(bssid)))
return(data)
} else if(feature == "countscansmostuniquedevice"){
# Get the most scanned device
data <- data %>% group_by(bssid) %>%
mutate(N=n()) %>%
ungroup() %>%
filter(N == max(N))
return(data %>%
filter_by_day_segment(day_segment) %>%
summarise(!!paste("wifi", day_segment, feature, sep = "_") := n()))
}
}
data <- read.csv(snakemake@input[[1]], stringsAsFactors = FALSE)
day_segment <- snakemake@params[["day_segment"]]
requested_features <- snakemake@params[["features"]]
features = data.frame(local_date = character(), stringsAsFactors = FALSE)
for(requested_feature in requested_features){
feature <- compute_wifi_feature(data, requested_feature, day_segment)
features <- merge(features, feature, by="local_date", all = TRUE)
}
write.csv(features, snakemake@output[[1]], row.names = FALSE)