Discard useless parameters and related code of example
parent
123b78d438
commit
00385dc54d
|
@ -17,9 +17,7 @@ rule targets:
|
|||
participant_info = "data/raw/{pid}/" + config["PARAMS_FOR_ANALYSIS"]["TARGET_TABLE"] + "_raw.csv"
|
||||
params:
|
||||
pid = "{pid}",
|
||||
summarised = "{summarised}",
|
||||
targets_ratio_threshold = config["PARAMS_FOR_ANALYSIS"]["TARGETS_RATIO_THRESHOLD"],
|
||||
targets_value_threshold = config["PARAMS_FOR_ANALYSIS"]["TARGETS_VALUE_THRESHOLD"]
|
||||
summarised = "{summarised}"
|
||||
output:
|
||||
"data/processed/{pid}/targets_{summarised}.csv"
|
||||
script:
|
||||
|
|
|
@ -3,19 +3,10 @@ import numpy as np
|
|||
|
||||
pid = snakemake.params["pid"]
|
||||
summarised = snakemake.params["summarised"]
|
||||
targets_ratio_threshold = snakemake.params["targets_ratio_threshold"]
|
||||
targets_value_threshold = snakemake.params["targets_value_threshold"]
|
||||
participant_info = pd.read_csv(snakemake.input["participant_info"])
|
||||
|
||||
if summarised == "summarised":
|
||||
targets = pd.DataFrame(columns=["pid", "target"])
|
||||
|
||||
if not participant_info.empty:
|
||||
cesds = participant_info.loc[0, ["preop_cesd_total", "inpatient_cesd_total", "postop_cesd_total", "3month_cesd_total"]]
|
||||
# targets: 1 => 50% (ceiling) or more of available CESD scores were 16 or higher; 0 => otherwise
|
||||
num_threshold = int((cesds.count() + 1) * targets_ratio_threshold)
|
||||
target = 1 if cesds.apply(lambda x : 1 if x >= targets_value_threshold else 0).sum() >= num_threshold else 0
|
||||
targets.loc[0, :] = [pid, target]
|
||||
raise ValueError("Do not support summarised features for example dataset.")
|
||||
|
||||
elif summarised == "notsummarised":
|
||||
targets = participant_info[["local_date", "target"]]
|
||||
|
|
Loading…
Reference in New Issue