28 lines
1.1 KiB
Python
28 lines
1.1 KiB
Python
|
import pandas as pd
|
||
|
import seaborn as sns
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
|
||
|
# path = "/rapids/data/processed/features/all_participants/all_sensor_features.csv" # all features all participants
|
||
|
# path = "/rapids/data/interim/p03/empatica_accelerometer_features/empatica_accelerometer_python_cr_windows.csv"
|
||
|
path = "/rapids/data/interim/p031/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_cr_windows.csv"
|
||
|
# path = "/rapids/data/interim/p02/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_cr_windows.csv"
|
||
|
# path = "/rapids/data/interim/p02/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_cr_windows.csv"
|
||
|
# path = "/rapids/data/interim/p02/empatica_temperature_features/empatica_temperature_python_cr_windows.csv"
|
||
|
|
||
|
df = pd.read_csv(path)
|
||
|
print(df)
|
||
|
is_NaN = df.isnull()
|
||
|
df = df[df["empatica_electrodermal_activity_cr_numPeaks"]]
|
||
|
print(df)
|
||
|
|
||
|
|
||
|
# row_has_NaN = is_NaN. any(axis=1)
|
||
|
# rows_with_NaN = df[row_has_NaN]
|
||
|
# print(rows_with_NaN.size)
|
||
|
|
||
|
# sns.heatmap(df.isna(), cbar=False)
|
||
|
plt.savefig('eda_windows_p03_window_60_thresh_default.png', bbox_inches='tight')
|
||
|
|
||
|
|