2020-01-29 22:22:53 +01:00
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
import datetime as dt
|
|
|
|
from features_utils import splitOvernightEpisodes, splitMultiSegmentEpisodes
|
|
|
|
|
|
|
|
day_segment = snakemake.params["day_segment"]
|
|
|
|
all_steps = snakemake.params["metrics_all_steps"]
|
|
|
|
sedentary_bout = snakemake.params["metrics_sedentary_bout"]
|
|
|
|
active_bout = snakemake.params["metrics_active_bout"]
|
|
|
|
threshold_active_bout = snakemake.params['threshold_active_bout']
|
2020-03-09 20:59:51 +01:00
|
|
|
include_zero_step_rows = snakemake.params["include_zero_step_rows"]
|
2020-01-29 22:22:53 +01:00
|
|
|
|
|
|
|
#Read csv into a pandas dataframe
|
|
|
|
data = pd.read_csv(snakemake.input['steps_data'],parse_dates=['local_date_time'])
|
|
|
|
columns = list("step_" + str(day_segment) + "_" + column for column in (all_steps + sedentary_bout + active_bout))
|
|
|
|
|
|
|
|
if (day_segment != 'daily'):
|
|
|
|
data = data.loc[data['local_day_segment'] == str(day_segment)]
|
|
|
|
|
|
|
|
if data.empty:
|
|
|
|
finalDataset = pd.DataFrame(columns = columns)
|
|
|
|
else:
|
|
|
|
finalDataset = pd.DataFrame()
|
|
|
|
|
|
|
|
#Preprocessing:
|
|
|
|
data.local_date_time = pd.to_datetime(data.local_date_time)
|
|
|
|
resampledData = data.set_index(data.local_date_time)
|
|
|
|
resampledData.index.names = ['datetime']
|
|
|
|
|
|
|
|
resampledData['time_diff_minutes'] = resampledData['local_date_time'].diff().fillna(pd.Timedelta(seconds=0)).dt.total_seconds().div(60).astype(int)
|
|
|
|
|
|
|
|
#Sedentary Bout when you have less than 10 steps in a minute
|
|
|
|
#Active Bout when you have greater or equal to 10 steps in a minute
|
|
|
|
resampledData['active_sedentary'] = np.where(resampledData['steps']<int(threshold_active_bout),'sedentary','active')
|
|
|
|
|
|
|
|
activeData = resampledData[resampledData['active_sedentary']=="active"]
|
|
|
|
sedentaryData = resampledData[resampledData['active_sedentary']=="sedentary"]
|
|
|
|
|
|
|
|
#Time Calculations of sedentary/active bouts:
|
|
|
|
resampledData['active_sedentary_groups'] = (resampledData.active_sedentary != resampledData.active_sedentary.shift()).cumsum().values
|
|
|
|
|
|
|
|
#Get the total minutes for each episode
|
|
|
|
minutesGroupedBy = resampledData.groupby(['local_date','active_sedentary','active_sedentary_groups'])['time_diff_minutes'].sum()
|
|
|
|
|
|
|
|
#Get Stats for all episodes in terms of minutes
|
|
|
|
statsMinutes = minutesGroupedBy.groupby(['local_date','active_sedentary']).agg([max,min,np.mean,np.std])
|
|
|
|
mux = pd.MultiIndex.from_product([statsMinutes.index.levels[0], statsMinutes.index.levels[1]],names=['local_date','active_sedentary'])
|
|
|
|
statsMinutes = statsMinutes.reindex(mux, fill_value=None).reset_index()
|
|
|
|
statsMinutes.set_index('local_date',inplace = True)
|
|
|
|
|
|
|
|
#Descriptive Statistics Features:
|
|
|
|
if("sumallsteps" in all_steps):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_sumallsteps"] = resampledData['steps'].resample('D').sum()
|
|
|
|
|
|
|
|
if("maxallsteps" in all_steps):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_maxallsteps"] = resampledData['steps'].resample('D').max()
|
|
|
|
|
|
|
|
if("minallsteps" in all_steps):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_minallsteps"] = resampledData['steps'].resample('D').min()
|
|
|
|
|
|
|
|
if("avgallsteps" in all_steps):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_avgallsteps"] = resampledData['steps'].resample('D').mean()
|
|
|
|
|
|
|
|
if("stdallsteps" in all_steps):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_stdallsteps"] = resampledData['steps'].resample('D').std()
|
|
|
|
|
|
|
|
if("countsedentarybout" in sedentary_bout):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_countsedentarybout"] = sedentaryData['active_sedentary'].resample('D').count()
|
|
|
|
|
|
|
|
if("countactivebout" in active_bout):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_countactivebout"] = activeData['active_sedentary'].resample('D').count()
|
|
|
|
|
|
|
|
if("maxdurationsedentarybout" in sedentary_bout):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_maxdurationsedentarybout"] = statsMinutes[statsMinutes['active_sedentary']=='sedentary']['max']
|
|
|
|
|
|
|
|
if("mindurationsedentarybout" in sedentary_bout):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_mindurationsedentarybout"] = statsMinutes[statsMinutes['active_sedentary']=='sedentary']['min']
|
|
|
|
|
|
|
|
if("avgdurationsedentarybout" in sedentary_bout):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_avgdurationsedentarybout"] = statsMinutes[statsMinutes['active_sedentary']=='sedentary']['mean']
|
|
|
|
|
|
|
|
if("stddurationsedentarybout" in sedentary_bout):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_stddurationsedentarybout"] = statsMinutes[statsMinutes['active_sedentary']=='sedentary']['std']
|
|
|
|
|
|
|
|
if("maxdurationactivebout" in active_bout):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_maxdurationactivebout"] = statsMinutes[statsMinutes['active_sedentary']== 'active']['max']
|
|
|
|
|
|
|
|
if("mindurationactivebout" in active_bout):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_mindurationactivebout"] = statsMinutes[statsMinutes['active_sedentary']== 'active']['min']
|
|
|
|
|
|
|
|
if("avgdurationactivebout" in active_bout):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_avgdurationactivebout"] = statsMinutes[statsMinutes['active_sedentary']== 'active']['mean']
|
|
|
|
|
|
|
|
if("stddurationactivebout" in active_bout):
|
|
|
|
finalDataset["step_" + str(day_segment) + "_stddurationactivebout"] = statsMinutes[statsMinutes['active_sedentary']== 'active']['std']
|
2020-03-09 20:59:51 +01:00
|
|
|
|
|
|
|
#Exclude data when the total step count is ZERO during the whole epoch
|
|
|
|
if not include_zero_step_rows:
|
|
|
|
finalDataset["sumallsteps_aux"] = resampledData["steps"].resample("D").sum()
|
|
|
|
finalDataset = finalDataset.query("sumallsteps_aux != 0")
|
|
|
|
del finalDataset["sumallsteps_aux"]
|
2020-01-29 22:22:53 +01:00
|
|
|
|
|
|
|
finalDataset.index.names = ['local_date']
|
|
|
|
finalDataset.to_csv(snakemake.output[0])
|