2019-10-24 18:11:24 +02:00
# Valid database table names
2019-11-06 22:08:50 +01:00
SENSORS : [ applications_crashes, applications_foreground, applications_notifications, battery, bluetooth, calls, fitbit_data, locations, messages, plugin_ambient_noise, plugin_device_usage, plugin_google_activity_recognition, screen]
2019-10-24 18:11:24 +02:00
# Participants to include in the analysis
# You must create a file for each participant
# named pXXX containing their device_id
2019-10-24 22:27:43 +02:00
PIDS : [ p01, p02]
# Global var with common day segments
DAY_SEGMENTS : &day_segments
[ daily, morning, afternoon, evening, night]
2019-11-05 21:17:20 +01:00
# Global timezone
2019-11-06 23:12:06 +01:00
# Use codes from https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
# Double check your code, for example EST is not US Eastern Time.
2019-11-05 21:17:20 +01:00
TIMEZONE : &timezone
2019-11-06 23:12:06 +01:00
America/New_York
2019-11-05 21:17:20 +01:00
2019-10-24 23:27:00 +02:00
# Download data config
DOWNLOAD_DATASET :
GROUP : AAPECS
# Readable datetime config
READABLE_DATETIME :
2019-11-05 21:17:20 +01:00
FIXED_TIMEZONE : *timezone
2019-10-24 23:27:00 +02:00
2019-11-06 21:38:08 +01:00
# Communication SMS features config, TYPES and METRICS keys need to match
SMS :
TYPES : [ received, sent]
METRICS :
2019-11-12 21:53:59 +01:00
received : [ count, distinctcontacts, timefirstsms, timelastsms, countmostfrequentcontact]
sent : [ count, distinctcontacts, timefirstsms, timelastsms, countmostfrequentcontact]
2019-11-06 21:38:08 +01:00
DAY_SEGMENTS : *day_segments
# Communication call features config, TYPES and METRICS keys need to match
2019-11-06 20:47:33 +01:00
CALLS :
TYPES : [ missed, incoming, outgoing]
METRICS :
2019-11-12 21:44:26 +01:00
missed : [ count, distinctcontacts, timefirstcall, timelastcall, countmostfrequentcontact]
2019-11-12 21:40:48 +01:00
incoming : [ count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, hubermduration, varqnduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
outgoing : [ count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, hubermduration, varqnduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
2019-10-25 16:21:09 +02:00
DAY_SEGMENTS : *day_segments
2019-11-05 18:34:22 +01:00
PHONE_VALID_SENSED_DAYS :
BIN_SIZE : 5 # (in minutes)
MIN_VALID_HOURS : 20 # (out of 24)
2019-11-05 21:17:20 +01:00
MIN_BINS_PER_HOUR : 8 # (out of 60min/BIN_SIZE bins)
2019-12-10 00:23:00 +01:00
RESAMPLE_FUSED_LOCATION :
CONSECUTIVE_THRESHOLD : 30 # minutes, only replicate location samples to the next sensed bin if the phone did not stop collecting data for more than this threshold
TIME_SINCE_VALID_LOCATION : 12 # hours, only replicate location samples to consecutive sensed bins if they were logged within this threshold after a valid location row
TIMEZONE : *timezone
2019-11-05 21:17:20 +01:00
BARNETT_LOCATION :
2019-12-10 01:15:10 +01:00
LOCATIONS_TO_USE : ALL # ALL_EXCEPT_FUSED, RESAMPLE_FUSED
ACCURACY_LIMIT : 51 # meters, drops location coordinates with an accuracy higher than this. This number means there's a 68% probability the true location is within this radius
2019-11-06 18:19:30 +01:00
TIMEZONE : *timezone
BLUETOOTH :
DAY_SEGMENTS : *day_segments
2019-11-18 20:22:08 +01:00
METRICS : [ "countscans" , "uniquedevices" , "countscansmostuniquedevice" ]
GOOGLE_ACTIVITY_RECOGNITION :
DAY_SEGMENTS : *day_segments
METRICS : [ 'count' , 'most_common_activity' , 'number_unique_activities' , 'activity_change_count' ]
2019-11-25 18:53:32 +01:00
BATTERY :
DAY_SEGMENTS : *day_segments
METRICS : [ "countdischarge" , "sumdurationdischarge" , "countcharge" , "sumdurationcharge" , "avgconsumptionrate" , "maxconsumptionrate" ]
2019-11-27 20:25:17 +01:00
SCREEN :
DAY_SEGMENTS : *day_segments
2019-12-04 22:04:37 +01:00
METRICS_EVENTS : [ "counton" , "countunlock" , "unlocksperminute" ]
2019-12-02 17:22:50 +01:00
METRICS_DELTAS : [ "sumduration" , "maxduration" , "minduration" , "avgduration" , "stdduration" ]
2020-01-14 15:51:39 +01:00
EPISODES : [ "unlock" ]
LIGHT :
DAY_SEGMENTS : *day_segments
METRICS : [ "count" , "maxlux" , "minlux" , "avglux" , "medianlux" , "stdlux" ]
2020-01-15 20:15:24 +01:00
ACCELEROMETER :
DAY_SEGMENTS : *day_segments
METRICS : [ "maxmagnitude" , "minmagnitude" , "avgmagnitude" , "medianmagnitude" , "stdmagnitude" , "ratioexertionalactivityepisodes" , "sumexertionalactivityepisodes" , "longestexertionalactivityepisode" , "longestnonexertionalactivityepisode" , "countexertionalactivityepisodes" , "countnonexertionalactivityepisodes" ]