2022-06-02 08:41:53 +02:00
|
|
|
import pandas as pd
|
|
|
|
import seaborn as sns
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
2022-07-06 09:35:39 +02:00
|
|
|
|
2022-09-20 14:57:55 +02:00
|
|
|
participant = "p01"
|
|
|
|
all_sensors = ["eda", "ibi", "temp", "acc"]
|
2022-07-06 09:35:39 +02:00
|
|
|
|
|
|
|
for sensor in all_sensors:
|
|
|
|
|
|
|
|
if sensor == "eda":
|
|
|
|
path = f"/rapids/data/interim/{participant}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_cr_windows.csv"
|
|
|
|
elif sensor == "bvp":
|
|
|
|
path = f"/rapids/data/interim/{participant}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_cr_windows.csv"
|
|
|
|
elif sensor == "ibi":
|
|
|
|
path = f"/rapids/data/interim/{participant}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_cr_windows.csv"
|
|
|
|
elif sensor == "acc":
|
|
|
|
path = f"/rapids/data/interim/{participant}/empatica_accelerometer_features/empatica_accelerometer_python_cr_windows.csv"
|
|
|
|
elif sensor == "temp":
|
|
|
|
path = f"/rapids/data/interim/{participant}/empatica_temperature_features/empatica_temperature_python_cr_windows.csv"
|
|
|
|
else:
|
|
|
|
path = "/rapids/data/processed/features/all_participants/all_sensor_features.csv" # all features all participants
|
|
|
|
|
|
|
|
|
|
|
|
df = pd.read_csv(path)
|
|
|
|
print(df)
|
|
|
|
is_NaN = df.isnull()
|
|
|
|
row_has_NaN = is_NaN.any(axis=1)
|
|
|
|
rows_with_NaN = df[row_has_NaN]
|
|
|
|
|
|
|
|
print("All rows:", len(df.index))
|
|
|
|
print("\nCount NaN vals:", rows_with_NaN.size)
|
|
|
|
print("\nDf mean:")
|
|
|
|
print(df.mean())
|
2022-06-02 08:41:53 +02:00
|
|
|
|
2022-07-06 09:35:39 +02:00
|
|
|
sns.heatmap(df.isna(), cbar=False)
|
|
|
|
plt.savefig(f'{sensor}_{participant}_windows_NaN.png', bbox_inches='tight')
|
2022-06-02 08:41:53 +02:00
|
|
|
|
|
|
|
|