|`[TABLE]`| Database table name or file path where the sleep intraday data is stored. The configuration keys in [Device Data Source Configuration](../../setup/configuration/#device-data-source-configuration) control whether this parameter is interpreted as table or file.
The format of the column(s) containing the Fitbit sensor data can be `JSON` or `PLAIN_TEXT`. The data in `JSON` format is obtained directly from the Fitbit API. We support `PLAIN_TEXT` in case you already parsed your data and don't have access to your participants' Fitbit accounts anymore. If your data is in `JSON` format then summary and intraday data come packed together.
We provide examples of the input format that RAPIDS expects, note that both examples for `JSON` and `PLAIN_TEXT` are tabular and the actual format difference comes in the `fitbit_data` column (we truncate the `JSON` example for brevity).
??? example "Example of the structure of source data with Fitbit’s sleep API Version 1"
All columns are mandatory, however, all except `device_id`, `local_date_time` and `duration` can be empty if you don't have that data. Just have in mind that some features might be inaccurate or empty as `type_episode_id`, `level`, `is_main_sleep`, and `type` are used for sleep episodes extraction. `type_episode_id` is based on where it is extracted: if it is extracted from the 1st "minutesData" block, the `type_episode_id` field will be 0. Similarly, the kth block will be k-1. Actually, you only need to make sure rows extracted from the same "minutesData" block are assigned with the same unique `type_episode_id` value.
All columns are mandatory, however, all except `device_id`, `local_date_time` and `duration` can be empty if you don't have that data. Just have in mind that some features might be inaccurate or empty as `type_episode_id`, `level`, `is_main_sleep`, and `type` are used for sleep episodes extraction. `type_episode_id` is based on where it is extracted: if it is extracted from the 1st "data" and "shortData" block, the `type_episode_id` field will be 0. Similarly, the kth block will be k-1. Actually, you only need to make sure rows extracted from the same "minutesData" block are assigned with the same unique `type_episode_id` value.
|`[SLEEP_LEVELS]` | Fitbit’s sleep API Version 1 only provides `CLASSIC` records. However, Version 1.2 provides 2 types of records: `CLASSIC` and `STAGES`. `STAGES` is only available in devices with a heart rate sensor and even those devices will fail to report it if the battery is low or the device is not tight enough. While `CLASSIC` contains 3 sleep levels (`awake`, `restless`, and `asleep`), `STAGES` contains 4 sleep levels (`wake`, `deep`, `light`, `rem`). To make it consistent, RAPIDS grouped them into 2 `UNIFIED` sleep levels: `awake` (`CLASSIC`: `awake` and `restless`; `STAGES`: `wake`) and `asleep` (`CLASSIC`: `asleep`; `STAGES`: `deep`, `light`, and `rem`).
|`[SLEEP_TYPES]` | Types of sleep to be included in the feature extraction computation. Fitbit provides 2 types of sleep: `main`, `nap`.
|`[INCLUDE_SLEEP_LATER_THAN]`| All resampled sleep rows (bin interval: one minute) that started after this time will be included in the feature computation. It is a number ranging from 0 (midnight) to 1439 (23:59) which denotes the number of minutes after midnight. If a segment is longer than one day, this value is for every day.
|`[REFERENCE_TIME]`| The reference point from which the `[ROUTINE]` features are to be computed. Chosen from `MIDNIGHT` and `START_OF_THE_SEGMENT`, default is `MIDNIGHT`. If you have multiple time segments per day it might be more informative to set this flag to `START_OF_THE_SEGMENT`.
|countepisode`[LEVEL][TYPE]` |episodes |Number of `[LEVEL][TYPE]`sleep episodes. `[LEVEL]`is one of `[SLEEP_LEVELS]` (e.g. awake-classic or rem-stages) and `[TYPE]` is one of `[SLEEP_TYPES]` (e.g. main). Both `[LEVEL]`and `[TYPE]` can also be `all` when ``LEVELS_AND_TYPES_COMBINING_ALL`` is True, which ignores the levels and groups by sleep types.
|sumduration`[LEVEL][TYPE]` |minutes |Total duration of all `[LEVEL][TYPE]`sleep episodes. `[LEVEL]`is one of `[SLEEP_LEVELS]` (e.g. awake-classic or rem-stages) and `[TYPE]` is one of `[SLEEP_TYPES]` (e.g. main). Both `[LEVEL]` and `[TYPE]`can also be `all` when `LEVELS_AND_TYPES_COMBINING_ALL` is True, which ignores the levels and groups by sleep types.
|maxduration`[LEVEL][TYPE]` |minutes | Longest duration of any `[LEVEL][TYPE]`sleep episode. `[LEVEL]`is one of `[SLEEP_LEVELS]` (e.g. awake-classic or rem-stages) and `[TYPE]` is one of `[SLEEP_TYPES]` (e.g. main). Both `[LEVEL]` and `[TYPE]`can also be `all` when `LEVELS_AND_TYPES_COMBINING_ALL` is True, which ignores the levels and groups by sleep types.
|minduration`[LEVEL][TYPE]` |minutes | Shortest duration of any `[LEVEL][TYPE]`sleep episode. `[LEVEL]`is one of `[SLEEP_LEVELS]` (e.g. awake-classic or rem-stages) and `[TYPE]` is one of `[SLEEP_TYPES]` (e.g. main). Both `[LEVEL]` and `[TYPE]`can also be `all` when `LEVELS_AND_TYPES_COMBINING_ALL` is True, which ignores the levels and groups by sleep types.
|avgduration`[LEVEL][TYPE]` |minutes | Average duration of all `[LEVEL][TYPE]`sleep episodes. `[LEVEL]`is one of `[SLEEP_LEVELS]` (e.g. awake-classic or rem-stages) and `[TYPE]` is one of `[SLEEP_TYPES]` (e.g. main). Both `[LEVEL]` and `[TYPE]`can also be `all` when `LEVELS_AND_TYPES_COMBINING_ALL` is True, which ignores the levels and groups by sleep types.
|medianduration`[LEVEL][TYPE]` |minutes | Median duration of all `[LEVEL][TYPE]`sleep episodes. `[LEVEL]`is one of `[SLEEP_LEVELS]` (e.g. awake-classic or rem-stages) and `[TYPE]` is one of `[SLEEP_TYPES]` (e.g. main). Both `[LEVEL]` and `[TYPE]`can also be `all` when `LEVELS_AND_TYPES_COMBINING_ALL` is True, which ignores the levels and groups by sleep types.
|stdduration`[LEVEL][TYPE]` |minutes | Standard deviation duration of all `[LEVEL][TYPE]`sleep episodes. `[LEVEL]`is one of `[SLEEP_LEVELS]` (e.g. awake-classic or rem-stages) and `[TYPE]` is one of `[SLEEP_TYPES]` (e.g. main). Both `[LEVEL]` and `[TYPE]`can also be `all` when `LEVELS_AND_TYPES_COMBINING_ALL` is True, which ignores the levels and groups by sleep types.
|ratiocount`[LEVEL]` |-|Ratio between the **count** of episodes of a single sleep `[LEVEL]` and the **count** of all episodes of all levels during both `main` and `nap` sleep types. This answers the question: what percentage of all `wake`, `deep`, `light`, and `rem` episodes were `rem`? (e.g., $countepisode[remstages][all] / countepisode[all][all]$)
|ratioduration`[LEVEL]` |-|Ratio between the **duration** of episodes of a single sleep `[LEVEL]` and the **duration** of all episodes of all levels during both `main` and `nap` sleep types. This answers the question: what percentage of all `wake`, `deep`, `light`, and `rem` time was `rem`? (e.g., $sumduration[remstages][all] / sumduration[all][all]$)
|ratiocountmain |- |Ratio between the **count** of all `main` episodes (independently of the levels inside) divided by the **count** of all `main` and `nap` episodes. This answers the question: what percentage of all sleep episodes (`main` and `nap`) were `main`? We do not provide the ratio for `nap` because is complementary. ($countepisode[all][main] / countepisode[all][all]$)
|ratiodurationmain |- |Ratio between the **duration** of all `main` episodes (independently of the levels inside) divided by the **duration** of all `main` and `nap` episodes. This answers the question: what percentage of all sleep time (`main` and `nap`) was `main`? We do not provide the ratio for `nap` because is complementary. ($sumduration[all][main] / sumduration[all][all]$)
|ratiocount`[TYPE]`within`[LEVEL]` |- |Ratio between the **count** of episodes of a single sleep `[LEVEL]` during `main` sleep divided by the **count** of episodes of a single sleep `[LEVEL]` during `main`**and**`nap`. This answers the question: are `rem` episodes more frequent during `main` than `nap` sleep? We do not provide the ratio for `nap` because is complementary. ($countepisode[remstages][main] / countepisode[remstages][all]$)
|ratioduration`[TYPE]`within`[LEVEL]` |- |Ratio between the **duration** of episodes of a single sleep `[LEVEL]` during `main` sleep divided by the **duration** of episodes of a single sleep `[LEVEL]` during `main`**and**`nap`. This answers the question: is `rem` time more frequent during `main` than `nap` sleep? We do not provide the ratio for `nap` because is complementary. ($countepisode[remstages][main] / countepisode[remstages][all]$)
|ratiocount`[LEVEL]`within`[TYPE]` |-|Ratio between the **count** of episodes of a single sleep `[LEVEL]` and the **count** of all episodes of all levels during either `main` or `nap` sleep types. This answers the question: what percentage of all `wake`, `deep`, `light`, and `rem` episodes were `rem` during `main`/`nap` sleep time? (e.g., $countepisode[remstages][main] / countepisode[all][main]$)
|ratioduration`[LEVEL]`within`[TYPE]` |-|Ratio between the **duration** of episodes of a single sleep `[LEVEL]` and the **duration** of all episodes of all levels during either `main` or `nap` sleep types. This answers the question: what percentage of all `wake`, `deep`, `light`, and `rem` time was `rem` during `main`/`nap` sleep time? (e.g., $sumduration[remstages][main] / sumduration[all][main]$)
1. Deleting values from `[SLEEP_LEVELS]` or `[SLEEP_TYPES]` will only change the features you receive from `[LEVELS_AND_TYPES]`. For example if `STAGES` only contains `[rem, light]` you will not receive `countepisode[wake|deep][TYPE]` or sum, max, min, avg, median, or std `duration`. These values will not influence `RATIOS` or `ROUTINE` features.
2. Any `[LEVEL]` grouping is done within the elements of each class `CLASSIC`, `STAGES`, and `UNIFIED`. That is, we never combine `CLASSIC` or `STAGES` types to compute features when `LEVELS_AND_TYPES_COMBINING_ALL` is True or when computing `RATIOS`.
|`[SLEEP_LEVELS]` | Fitbit’s sleep API Version 1 only provides `CLASSIC` records. However, Version 1.2 provides 2 types of records: `CLASSIC` and `STAGES`. `STAGES` is only available in devices with a heart rate sensor and even those devices will fail to report it if the battery is low or the device is not tight enough. While `CLASSIC` contains 3 sleep levels (`awake`, `restless`, and `asleep`), `STAGES` contains 4 sleep levels (`wake`, `deep`, `light`, `rem`). To make it consistent, RAPIDS grouped them into 2 `UNIFIED` sleep levels: `awake` (`CLASSIC`: `awake` and `restless`; `STAGES`: `wake`) and `asleep` (`CLASSIC`: `asleep`; `STAGES`: `deep`, `light`, and `rem`).
|`[DAY_TYPE]` | The features of this provider can be computed using daily averages/standard deviations that were extracted on `WEEKEND` days only, `WEEK` days only, or `ALL` days|
|`[GROUP_EPISODES_WITHIN]` | This parameter contains 2 values: `[START_TIME]` and `[LENGTH]`. Only `main` sleep episodes that intersect or contain the period between [`START_TIME`, `START_TIME` + `LENGTH`] are taken into account to compute the features described below. Both `[START_TIME]` and `[LENGTH]` are in minutes. `[START_TIME]` is a number ranging from 0 (midnight) to 1439 (23:59) which denotes the number of minutes after midnight. `[LENGTH]` is a number smaller than 1440 (24 hours). |
|avgduration`[LEVEL]`main`[DAY_TYPE]` |minutes | Average duration of daily `LEVEL` sleep episodes. You can include daily average that were computed on weekend days, week days or both depending on the value of the `DAY_TYPE` flag.
|avgratioduration`[LEVEL]`withinmain`[DAY_TYPE]` |- | Average ratio between daily `LEVEL` time and in-bed time inferred from `main` sleep episodes. `LEVEL` is one of `SLEEP_LEVELS` (e.g. awake-classic or rem-stages). In-bed time is the total duration of all `main` sleep episodes for each day. You can include daily ratios that were computed on weekend days, week days or both depending on the value of the `DAY_TYPE` flag.
|avgstarttimeofepisodemain`[DAY_TYPE]` |minutes | Average start time of the first `main` sleep episode of each day in a time segment. You can include daily start times from episodes detected on weekend days, week days or both depending on the value of the `DAY_TYPE` flag.
|avgendtimeofepisodemain`[DAY_TYPE]` |minutes | Average end time of the last `main` sleep episode of each day in a time segment. You can include daily end times from episodes detected on weekend days, week days or both depending on the value of the `DAY_TYPE` flag.
|avgmidpointofepisodemain`[DAY_TYPE]` |minutes | Average mid time between the start of the first `main` sleep episode and the end of the last `main` sleep episode of each day in a time segment. You can include episodes detected on weekend days, week days or both depending on the value of the `DAY_TYPE` flag.
|stdstarttimeofepisodemain`[DAY_TYPE]` |minutes | Standard deviation of start time of the first `main` sleep episode of each day in a time segment. You can include daily start times from episodes detected on weekend days, week days or both depending on the value of the `DAY_TYPE` flag.
|stdendtimeofepisodemain`[DAY_TYPE]` |minutes | Standard deviation of end time of the last `main` sleep episode of each day in a time segment. You can include daily end times from episodes detected on weekend days, week days or both depending on the value of the `DAY_TYPE` flag.
|stdmidpointofepisodemain`[DAY_TYPE]` |minutes | Standard deviation of mid time between the start of the first `main` sleep episode and the end of the last `main` sleep episode of each day in a time segment. You can include episodes detected on weekend days, week days or both depending on the value of the `DAY_TYPE` flag.
|socialjetlag |minutes | Difference in minutes between the avgmidpointofepisodemain (average mid time between bedtime and wake time) of weekends and weekdays.
|meanssdstarttimeofepisodemain |minutes squared | Same as `avgstarttimeofepisodemain[DAY_TYPE]` but the average is computed over the squared differences of each pair of consecutive start times.
|meanssdendtimeofepisodemain |minutes squared | Same as `avgendtimeofepisodemain[DAY_TYPE]` but the average is computed over the squared differences of each pair of consecutive end times.
|meanssdmidpointofepisodemain |minutes squared | Same as `avgmidpointofepisodemain[DAY_TYPE]` but the average is computed over the squared differences of each pair of consecutive mid times.
|medianssdstarttimeofepisodemain |minutes squared | Same as `avgstarttimeofepisodemain[DAY_TYPE]` but the median is computed over the squared differences of each pair of consecutive start times.
|medianssdendtimeofepisodemain |minutes squared | Same as `avgendtimeofepisodemain[DAY_TYPE]` but the median is computed over the squared differences of each pair of consecutive end times.
|medianssdmidpointofepisodemain |minutes squared | Same as `avgmidpointofepisodemain[DAY_TYPE]` but the median is computed over the squared differences of each pair of consecutive mid times.
1. These features are based on descriptive statistics computed across daily values (start/end/mid times of sleep episodes). This is the reason why they are only available on time segments that are longer than 24 hours (we need at least 1 day to get the average).
2. Even though Fitbit provides 2 types of sleep episodes (`main` and `nap`), only `main` sleep episodes are considered.
3. How do we assign sleep episodes to specific dates?
`START_TIME` and `LENGTH` control the dates that sleep episodes belong to. For a pair of `[START_TIME]` and `[LENGTH]`, sleep episodes (blue boxes) can only be placed at the following places:
<figcaption>Relationship between sleep episodes and the given times`([START_TIME], [LENGTH])`</figcaption>
</figure>
- If the end time of a sleep episode is before `[START_TIME]`, it will belong to the day before its start date (e.g. sleep episode #1).
- if (1) the start time or the end time of a sleep episode are between (overlap) `[START_TIME]` and `[START_TIME] + [LENGTH]` or (2) the start time is before `[START_TIME]` and the end time is after `[START_TIME] + [LENGTH]`, it will belong to its start date (e.g. sleep episode #2, #3, #4, #5).
- If the start time of a sleep episode is after `START_TIME] + [LENGTH]`, it will belong to the day after its start date (e.g. sleep episode #6).
Only `main` sleep episodes that intersect or contain the period between `[START_TIME]` and `[START_TIME] + [LENGTH]` will be included in the feature computation. If we process the following `main` sleep episodes:
5. All `main` sleep episodes are chunked within the requested [time segments](../../setup/configuration/#time-segments) which need to be at least 24 hours or more long (1, 2, 3, 7 days, etc.). Then, daily features will be extracted and averaged across the length of the time segment, for example: