This is a quick guide for creating and running a simple pipeline to extract missing, outgoing, and incoming `call` features for `daily` (`00:00:00` to `23:59:59`) and `night` (`00:00:00` to `05:59:59`) epochs of every day of data of one participant monitored on the US East coast with an Android smartphone.
!!! hint
If you don't have `call` data that you can use to try this example you can restore this [CSV file](../img/calls.csv) as a table in a MySQL database.
2. Make the changes listed below for the corresponding [Configuration](../../setup/configuration) step (we provide an example of what the relevant sections in your `config.yml` will look like after you are done)
2.**Choose the [timezone of your study](../../setup/configuration#timezone-of-your-study).**
Since this example is processing data collected on the US East cost, `America/New_York` should be the configured timezone, change this according to your data.
3.**Create your [participants files](../../setup/configuration#participant-files).**
Since we are processing data from a single participant, you only need to create a single participant file called `p01.yaml`. This participant file only has a `PHONE` section because this hypothetical participant was only monitored with an smartphone. You also need to add `p01` to `[PIDS]` in `config.yaml`. The following would be the content of your `p01.yaml` participant file:
4.**Select what [time segments](../../setup/configuration#time-segments) you want to extract features on.**
`[TIME_SEGMENTS][TYPE]` should be the default `PERIODIC`. Change `[TIME_SEGMENTS][FILE]` with the path (for example `data/external/timesegments_periodic.csv`) of a file containing the following lines: