rapids/src/features/empatica_temperature/cr/main.py

65 lines
3.0 KiB
Python
Raw Normal View History

import pandas as pd
from scipy.stats import entropy
from cr_features.helper_functions import convert_to2d, generic_features
from cr_features.calculate_features_old import calculateFeatures
from cr_features.calculate_features import calculate_features
from cr_features_helper_methods import extract_second_order_features
import sys
def extract_temp_features_from_intraday_data(temperature_intraday_data, features, window_length, time_segment, filter_data_by_segment):
temperature_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
if not temperature_intraday_data.empty:
sample_rate = 4
temperature_intraday_data = filter_data_by_segment(temperature_intraday_data, time_segment)
if not temperature_intraday_data.empty:
temperature_intraday_features = pd.DataFrame()
# apply methods from calculate features module
if window_length is None:
temperature_intraday_features = \
temperature_intraday_data.groupby('local_segment').apply(\
lambda x: calculate_features(convert_to2d(x['temperature'], x.shape[0]), fs=sample_rate, feature_names=features, show_progress=False))
else:
temperature_intraday_features = \
temperature_intraday_data.groupby('local_segment').apply(\
lambda x: calculate_features(convert_to2d(x['temperature'], window_length*sample_rate), fs=sample_rate, feature_names=features, show_progress=False))
temperature_intraday_features.reset_index(inplace=True)
return temperature_intraday_features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
temperature_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_intraday_features = provider["FEATURES"]
calc_windows = kwargs.get('calc_windows', False)
if provider["WINDOWS"]["COMPUTE"] and calc_windows:
requested_window_length = provider["WINDOWS"]["WINDOW_LENGTH"]
else:
requested_window_length = None
# name of the features this function can compute
base_intraday_features_names = generic_features
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
temperature_intraday_features = extract_temp_features_from_intraday_data(temperature_intraday_data, intraday_features_to_compute,
requested_window_length, time_segment, filter_data_by_segment)
if calc_windows:
so_features_names = provider["WINDOWS"]["SECOND_ORDER_FEATURES"]
temperature_second_order_features = extract_second_order_features(temperature_intraday_features, so_features_names)
return temperature_intraday_features, temperature_second_order_features
return temperature_intraday_features