78 lines
4.4 KiB
Markdown
78 lines
4.4 KiB
Markdown
|
# Phone Accelerometer
|
||
|
|
||
|
## RAPIDS provider
|
||
|
|
||
|
!!! info "Available day segments and platforms"
|
||
|
- Available for all day segments
|
||
|
- Available for Android and iOS
|
||
|
|
||
|
!!! info "File Sequence"
|
||
|
```bash
|
||
|
- data/raw/{pid}/phone_accelerometer_raw.csv
|
||
|
- data/raw/{pid}/phone_accelerometer_with_datetime.csv
|
||
|
- data/interim/{pid}/phone_accelerometer_features/phone_accelerometer_{language}_{provider_key}.csv
|
||
|
- data/processed/features/{pid}/phone_accelerometer.csv
|
||
|
```
|
||
|
|
||
|
|
||
|
Parameters description for `[PHONE_ACCELEROMETER][PROVIDERS][RAPIDS]`:
|
||
|
|
||
|
|Key | Description |
|
||
|
|----------------|-----------------------------------------------------------------------------------------------------------------------------------
|
||
|
|`[COMPUTE]`| Set to `True` to extract `PHONE_ACCELEROMETER` features from the `RAPIDS` provider|
|
||
|
|`[FEATURES]` | Features to be computed, see table below
|
||
|
|
||
|
|
||
|
Features description for `[PHONE_ACCELEROMETER][PROVIDERS][RAPIDS]`:
|
||
|
|
||
|
|Feature |Units |Description|
|
||
|
|-------------------------- |---------- |---------------------------|
|
||
|
|maxmagnitude |m/s^2^ |The maximum magnitude of acceleration ($\|acceleration\| = \sqrt{x^2 + y^2 + z^2}$).
|
||
|
|minmagnitude |m/s^2^ |The minimum magnitude of acceleration.
|
||
|
|avgmagnitude |m/s^2^ |The average magnitude of acceleration.
|
||
|
|medianmagnitude |m/s^2^ |The median magnitude of acceleration.
|
||
|
|stdmagnitude |m/s^2^ |The standard deviation of acceleration.
|
||
|
|
||
|
!!! note "Assumptions/Observations"
|
||
|
1. Analyzing accelerometer data is a memory intensive task. If RAPIDS crashes is likely because the accelerometer dataset for a participant is to big to fit in memory. We are considering different alternatives to overcome this problem.
|
||
|
|
||
|
## PANDA provider
|
||
|
|
||
|
These features are based on the work by [Panda et al](/citation#panda-accelerometer).
|
||
|
|
||
|
!!! info "Available day segments and platforms"
|
||
|
- Available for all day segments
|
||
|
- Available for Android and iOS
|
||
|
|
||
|
!!! info "File Sequence"
|
||
|
```bash
|
||
|
- data/raw/{pid}/phone_accelerometer_raw.csv
|
||
|
- data/raw/{pid}/phone_accelerometer_with_datetime.csv
|
||
|
- data/interim/{pid}/phone_accelerometer_features/phone_accelerometer_{language}_{provider_key}.csv
|
||
|
- data/processed/features/{pid}/phone_accelerometer.csv
|
||
|
```
|
||
|
|
||
|
|
||
|
Parameters description for `[PHONE_ACCELEROMETER][PROVIDERS][PANDA]`:
|
||
|
|
||
|
|Key | Description |
|
||
|
|----------------|-----------------------------------------------------------------------------------------------------------------------------------
|
||
|
|`[COMPUTE]`| Set to `True` to extract `PHONE_ACCELEROMETER` features from the `PANDA` provider|
|
||
|
|`[FEATURES]` | Features to be computed for exertional and non-exertional activity episodes, see table below
|
||
|
|
||
|
|
||
|
Features description for `[PHONE_ACCELEROMETER][PROVIDERS][PANDA]`:
|
||
|
|
||
|
|Feature |Units |Description|
|
||
|
|-------------------------- |---------- |---------------------------|
|
||
|
| sumduration | minutes | Total duration of all exertional or non-exertional activity episodes. |
|
||
|
| maxduration | minutes | Longest duration of any exertional or non-exertional activity episode. |
|
||
|
| minduration | minutes | Shortest duration of any exertional or non-exertional activity episode. |
|
||
|
| avgduration | minutes | Average duration of any exertional or non-exertional activity episode. |
|
||
|
| medianduration | minutes | Median duration of any exertional or non-exertional activity episode. |
|
||
|
| stdduration | minutes | Standard deviation of the duration of all exertional or non-exertional activity episodes. |
|
||
|
|
||
|
!!! note "Assumptions/Observations"
|
||
|
1. Analyzing accelerometer data is a memory intensive task. If RAPIDS crashes is likely because the accelerometer dataset for a participant is to big to fit in memory. We are considering different alternatives to overcome this problem.
|
||
|
2. See [Panda et al](/citation#panda-accelerometer) for a definition of exertional and non-exertional activity episodes
|