rapids/src/data/download_dataset.R

49 lines
2.1 KiB
R
Raw Normal View History

2020-05-02 01:46:04 +02:00
source("renv/activate.R")
2019-10-24 18:11:24 +02:00
library(RMySQL)
library(stringr)
library(dplyr)
2020-04-02 22:28:19 +02:00
library(readr)
2019-10-24 18:11:24 +02:00
participant <- snakemake@input[[1]]
2019-10-24 22:08:05 +02:00
group <- snakemake@params[["group"]]
table <- snakemake@params[["table"]]
2020-02-20 21:51:22 +01:00
timezone <- snakemake@params[["timezone"]]
2019-10-24 18:11:24 +02:00
sensor_file <- snakemake@output[[1]]
device_ids <- readLines(participant, n=1)
unified_device_id <- tail(strsplit(device_ids, ",")[[1]], 1)
2020-02-20 21:51:22 +01:00
# Read start and end date from the participant file to filter data within that range
2020-02-20 21:51:22 +01:00
start_date <- strsplit(readLines(participant, n=4)[4], ",")[[1]][1]
end_date <- strsplit(readLines(participant, n=4)[4], ",")[[1]][2]
start_datetime_utc = format(as.POSIXct(paste0(start_date, " 00:00:00"),format="%Y/%m/%d %H:%M:%S",origin="1970-01-01",tz=timezone), tz="UTC")
end_datetime_utc = format(as.POSIXct(paste0(end_date, " 23:59:59"),format="%Y/%m/%d %H:%M:%S",origin="1970-01-01",tz=timezone), tz="UTC")
stopDB <- dbConnect(MySQL(), default.file = "./.env", group = group)
2019-10-24 18:11:24 +02:00
# Get existent columns in table
query <- paste0("SELECT * FROM ", table, " LIMIT 1")
available_columns <- colnames(dbGetQuery(stopDB, query))
2019-10-24 18:11:24 +02:00
if("device_id" %in% available_columns){
query <- paste0("SELECT * FROM ", table, " WHERE device_id IN ('", gsub(",", "','", device_ids), "')")
if("timestamp" %in% available_columns && !(is.na(start_datetime_utc)) && !(is.na(end_datetime_utc)) && start_datetime_utc < end_datetime_utc){
query <- paste0(query, "AND timestamp BETWEEN 1000*UNIX_TIMESTAMP('", start_datetime_utc, "') AND 1000*UNIX_TIMESTAMP('", end_datetime_utc, "')")
}
sensor_data <- dbGetQuery(stopDB, query)
if("timestamp" %in% available_columns){
sensor_data <- sensor_data %>% arrange(timestamp)
}
# Unify device_id
sensor_data <- sensor_data %>% mutate(device_id = unified_device_id)
# Droping duplicates on all columns except for _id or id
sensor_data <- sensor_data %>% distinct(!!!syms(setdiff(names(sensor_data), c("_id", "id"))))
} else {
print(paste0("Table ", table, "does not have a device_id column (Aware ID) to link its data to a participant"))
}
2020-04-02 22:28:19 +02:00
write_csv(sensor_data, sensor_file)
dbDisconnect(stopDB)