/* Copyright 2016-2017 Yang Liu * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "progmem.h" #include "sync_timer.h" #include "rgblight.h" #include "color.h" #include "debug.h" #include "util.h" #include "led_tables.h" #include #ifdef EEPROM_ENABLE # include "eeprom.h" #endif #ifdef RGBLIGHT_SPLIT /* for split keyboard */ # define RGBLIGHT_SPLIT_SET_CHANGE_MODE rgblight_status.change_flags |= RGBLIGHT_STATUS_CHANGE_MODE # define RGBLIGHT_SPLIT_SET_CHANGE_HSVS rgblight_status.change_flags |= RGBLIGHT_STATUS_CHANGE_HSVS # define RGBLIGHT_SPLIT_SET_CHANGE_MODEHSVS rgblight_status.change_flags |= (RGBLIGHT_STATUS_CHANGE_MODE | RGBLIGHT_STATUS_CHANGE_HSVS) # define RGBLIGHT_SPLIT_SET_CHANGE_LAYERS rgblight_status.change_flags |= RGBLIGHT_STATUS_CHANGE_LAYERS # define RGBLIGHT_SPLIT_SET_CHANGE_TIMER_ENABLE rgblight_status.change_flags |= RGBLIGHT_STATUS_CHANGE_TIMER # define RGBLIGHT_SPLIT_ANIMATION_TICK rgblight_status.change_flags |= RGBLIGHT_STATUS_ANIMATION_TICK #else # define RGBLIGHT_SPLIT_SET_CHANGE_MODE # define RGBLIGHT_SPLIT_SET_CHANGE_HSVS # define RGBLIGHT_SPLIT_SET_CHANGE_MODEHSVS # define RGBLIGHT_SPLIT_SET_CHANGE_LAYERS # define RGBLIGHT_SPLIT_SET_CHANGE_TIMER_ENABLE # define RGBLIGHT_SPLIT_ANIMATION_TICK #endif #define _RGBM_SINGLE_STATIC(sym) RGBLIGHT_MODE_##sym, #define _RGBM_SINGLE_DYNAMIC(sym) #define _RGBM_MULTI_STATIC(sym) RGBLIGHT_MODE_##sym, #define _RGBM_MULTI_DYNAMIC(sym) #define _RGBM_TMP_STATIC(sym, msym) RGBLIGHT_MODE_##sym, #define _RGBM_TMP_DYNAMIC(sym, msym) static uint8_t static_effect_table[] = { #include "rgblight_modes.h" }; #define _RGBM_SINGLE_STATIC(sym) RGBLIGHT_MODE_##sym, #define _RGBM_SINGLE_DYNAMIC(sym) RGBLIGHT_MODE_##sym, #define _RGBM_MULTI_STATIC(sym) RGBLIGHT_MODE_##sym, #define _RGBM_MULTI_DYNAMIC(sym) RGBLIGHT_MODE_##sym, #define _RGBM_TMP_STATIC(sym, msym) RGBLIGHT_MODE_##msym, #define _RGBM_TMP_DYNAMIC(sym, msym) RGBLIGHT_MODE_##msym, static uint8_t mode_base_table[] = { 0, // RGBLIGHT_MODE_zero #include "rgblight_modes.h" }; #if !defined(RGBLIGHT_DEFAULT_MODE) # define RGBLIGHT_DEFAULT_MODE RGBLIGHT_MODE_STATIC_LIGHT #endif #if !defined(RGBLIGHT_DEFAULT_HUE) # define RGBLIGHT_DEFAULT_HUE 0 #endif #if !defined(RGBLIGHT_DEFAULT_SAT) # define RGBLIGHT_DEFAULT_SAT UINT8_MAX #endif #if !defined(RGBLIGHT_DEFAULT_VAL) # define RGBLIGHT_DEFAULT_VAL RGBLIGHT_LIMIT_VAL #endif #if !defined(RGBLIGHT_DEFAULT_SPD) # define RGBLIGHT_DEFAULT_SPD 0 #endif #if !defined(RGBLIGHT_DEFAULT_ON) # define RGBLIGHT_DEFAULT_ON true #endif static inline int is_static_effect(uint8_t mode) { return memchr(static_effect_table, mode, sizeof(static_effect_table)) != NULL; } #ifdef RGBLIGHT_LED_MAP const uint8_t led_map[] PROGMEM = RGBLIGHT_LED_MAP; #endif #ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT __attribute__((weak)) const uint8_t RGBLED_GRADIENT_RANGES[] PROGMEM = {255, 170, 127, 85, 64}; #endif rgblight_config_t rgblight_config; rgblight_status_t rgblight_status = {.timer_enabled = false}; bool is_rgblight_initialized = false; #ifdef RGBLIGHT_SLEEP static bool is_suspended; static bool pre_suspend_enabled; #endif #ifdef RGBLIGHT_USE_TIMER animation_status_t animation_status = {}; #endif #ifndef LED_ARRAY rgb_led_t led[RGBLIGHT_LED_COUNT]; # define LED_ARRAY led #endif #ifdef RGBLIGHT_LAYERS rgblight_segment_t const *const *rgblight_layers = NULL; static bool deferred_set_layer_state = false; #endif rgblight_ranges_t rgblight_ranges = {0, RGBLIGHT_LED_COUNT, 0, RGBLIGHT_LED_COUNT, RGBLIGHT_LED_COUNT}; void rgblight_set_clipping_range(uint8_t start_pos, uint8_t num_leds) { rgblight_ranges.clipping_start_pos = start_pos; rgblight_ranges.clipping_num_leds = num_leds; } void rgblight_set_effect_range(uint8_t start_pos, uint8_t num_leds) { if (start_pos >= RGBLIGHT_LED_COUNT) return; if (start_pos + num_leds > RGBLIGHT_LED_COUNT) return; rgblight_ranges.effect_start_pos = start_pos; rgblight_ranges.effect_end_pos = start_pos + num_leds; rgblight_ranges.effect_num_leds = num_leds; } __attribute__((weak)) RGB rgblight_hsv_to_rgb(HSV hsv) { return hsv_to_rgb(hsv); } void setrgb(uint8_t r, uint8_t g, uint8_t b, rgb_led_t *led1) { led1->r = r; led1->g = g; led1->b = b; #ifdef RGBW led1->w = 0; #endif } void sethsv_raw(uint8_t hue, uint8_t sat, uint8_t val, rgb_led_t *led1) { HSV hsv = {hue, sat, val}; RGB rgb = rgblight_hsv_to_rgb(hsv); setrgb(rgb.r, rgb.g, rgb.b, led1); } void sethsv(uint8_t hue, uint8_t sat, uint8_t val, rgb_led_t *led1) { sethsv_raw(hue, sat, val > RGBLIGHT_LIMIT_VAL ? RGBLIGHT_LIMIT_VAL : val, led1); } void rgblight_check_config(void) { /* Add some out of bound checks for RGB light config */ if (rgblight_config.mode < RGBLIGHT_MODE_STATIC_LIGHT) { rgblight_config.mode = RGBLIGHT_MODE_STATIC_LIGHT; } else if (rgblight_config.mode > RGBLIGHT_MODES) { rgblight_config.mode = RGBLIGHT_MODES; } if (rgblight_config.val > RGBLIGHT_LIMIT_VAL) { rgblight_config.val = RGBLIGHT_LIMIT_VAL; } } uint64_t eeconfig_read_rgblight(void) { #ifdef EEPROM_ENABLE return (uint64_t)((eeprom_read_dword(EECONFIG_RGBLIGHT)) | ((uint64_t)eeprom_read_byte(EECONFIG_RGBLIGHT_EXTENDED) << 32)); #else return 0; #endif } void eeconfig_update_rgblight(uint64_t val) { #ifdef EEPROM_ENABLE rgblight_check_config(); eeprom_update_dword(EECONFIG_RGBLIGHT, val & 0xFFFFFFFF); eeprom_update_byte(EECONFIG_RGBLIGHT_EXTENDED, (val >> 32) & 0xFF); #endif } void eeconfig_update_rgblight_current(void) { eeconfig_update_rgblight(rgblight_config.raw); } void eeconfig_update_rgblight_default(void) { rgblight_config.enable = RGBLIGHT_DEFAULT_ON; rgblight_config.velocikey = 0; rgblight_config.mode = RGBLIGHT_DEFAULT_MODE; rgblight_config.hue = RGBLIGHT_DEFAULT_HUE; rgblight_config.sat = RGBLIGHT_DEFAULT_SAT; rgblight_config.val = RGBLIGHT_DEFAULT_VAL; rgblight_config.speed = RGBLIGHT_DEFAULT_SPD; RGBLIGHT_SPLIT_SET_CHANGE_MODEHSVS; eeconfig_update_rgblight(rgblight_config.raw); } void eeconfig_debug_rgblight(void) { dprintf("rgblight_config EEPROM:\n"); dprintf("rgblight_config.enable = %d\n", rgblight_config.enable); dprintf("rgblight_config.velocikey = %d\n", rgblight_config.velocikey); dprintf("rghlight_config.mode = %d\n", rgblight_config.mode); dprintf("rgblight_config.hue = %d\n", rgblight_config.hue); dprintf("rgblight_config.sat = %d\n", rgblight_config.sat); dprintf("rgblight_config.val = %d\n", rgblight_config.val); dprintf("rgblight_config.speed = %d\n", rgblight_config.speed); } void rgblight_init(void) { /* if already initialized, don't do it again. If you must do it again, extern this and set to false, first. This is a dirty, dirty hack until proper hooks can be added for keyboard startup. */ if (is_rgblight_initialized) { return; } dprintf("rgblight_init start!\n"); rgblight_config.raw = eeconfig_read_rgblight(); RGBLIGHT_SPLIT_SET_CHANGE_MODEHSVS; if (!rgblight_config.mode) { dprintf("rgblight_init rgblight_config.mode = 0. Write default values to EEPROM.\n"); eeconfig_update_rgblight_default(); rgblight_config.raw = eeconfig_read_rgblight(); } rgblight_check_config(); eeconfig_debug_rgblight(); // display current eeprom values rgblight_timer_init(); // setup the timer rgblight_driver.init(); if (rgblight_config.enable) { rgblight_mode_noeeprom(rgblight_config.mode); } is_rgblight_initialized = true; } void rgblight_reload_from_eeprom(void) { /* Reset back to what we have in eeprom */ rgblight_config.raw = eeconfig_read_rgblight(); RGBLIGHT_SPLIT_SET_CHANGE_MODEHSVS; rgblight_check_config(); eeconfig_debug_rgblight(); // display current eeprom values if (rgblight_config.enable) { rgblight_mode_noeeprom(rgblight_config.mode); } } uint64_t rgblight_read_qword(void) { return rgblight_config.raw; } void rgblight_update_qword(uint64_t qword) { RGBLIGHT_SPLIT_SET_CHANGE_MODEHSVS; rgblight_config.raw = qword; if (rgblight_config.enable) rgblight_mode_noeeprom(rgblight_config.mode); else { rgblight_timer_disable(); rgblight_set(); } } void rgblight_increase(void) { uint8_t mode = 0; if (rgblight_config.mode < RGBLIGHT_MODES) { mode = rgblight_config.mode + 1; } rgblight_mode(mode); } void rgblight_decrease(void) { uint8_t mode = 0; // Mode will never be < 1. If it ever is, eeprom needs to be initialized. if (rgblight_config.mode > RGBLIGHT_MODE_STATIC_LIGHT) { mode = rgblight_config.mode - 1; } rgblight_mode(mode); } void rgblight_step_helper(bool write_to_eeprom) { uint8_t mode = 0; mode = rgblight_config.mode + 1; if (mode > RGBLIGHT_MODES) { mode = 1; } rgblight_mode_eeprom_helper(mode, write_to_eeprom); } void rgblight_step_noeeprom(void) { rgblight_step_helper(false); } void rgblight_step(void) { rgblight_step_helper(true); } void rgblight_step_reverse_helper(bool write_to_eeprom) { uint8_t mode = 0; mode = rgblight_config.mode - 1; if (mode < 1) { mode = RGBLIGHT_MODES; } rgblight_mode_eeprom_helper(mode, write_to_eeprom); } void rgblight_step_reverse_noeeprom(void) { rgblight_step_reverse_helper(false); } void rgblight_step_reverse(void) { rgblight_step_reverse_helper(true); } uint8_t rgblight_get_mode(void) { if (!rgblight_config.enable) { return false; } return rgblight_config.mode; } void rgblight_mode_eeprom_helper(uint8_t mode, bool write_to_eeprom) { if (!rgblight_config.enable) { return; } if (mode < RGBLIGHT_MODE_STATIC_LIGHT) { rgblight_config.mode = RGBLIGHT_MODE_STATIC_LIGHT; } else if (mode > RGBLIGHT_MODES) { rgblight_config.mode = RGBLIGHT_MODES; } else { rgblight_config.mode = mode; } RGBLIGHT_SPLIT_SET_CHANGE_MODE; if (write_to_eeprom) { eeconfig_update_rgblight(rgblight_config.raw); dprintf("rgblight mode [EEPROM]: %u\n", rgblight_config.mode); } else { dprintf("rgblight mode [NOEEPROM]: %u\n", rgblight_config.mode); } if (is_static_effect(rgblight_config.mode)) { rgblight_timer_disable(); } else { rgblight_timer_enable(); } #ifdef RGBLIGHT_USE_TIMER animation_status.restart = true; #endif rgblight_sethsv_noeeprom(rgblight_config.hue, rgblight_config.sat, rgblight_config.val); } void rgblight_mode(uint8_t mode) { rgblight_mode_eeprom_helper(mode, true); } void rgblight_mode_noeeprom(uint8_t mode) { rgblight_mode_eeprom_helper(mode, false); } void rgblight_toggle(void) { dprintf("rgblight toggle [EEPROM]: rgblight_config.enable = %u\n", !rgblight_config.enable); if (rgblight_config.enable) { rgblight_disable(); } else { rgblight_enable(); } } void rgblight_toggle_noeeprom(void) { dprintf("rgblight toggle [NOEEPROM]: rgblight_config.enable = %u\n", !rgblight_config.enable); if (rgblight_config.enable) { rgblight_disable_noeeprom(); } else { rgblight_enable_noeeprom(); } } void rgblight_enable(void) { rgblight_config.enable = 1; // No need to update EEPROM here. rgblight_mode() will do that, actually // eeconfig_update_rgblight(rgblight_config.raw); dprintf("rgblight enable [EEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable); rgblight_mode(rgblight_config.mode); } void rgblight_enable_noeeprom(void) { rgblight_config.enable = 1; dprintf("rgblight enable [NOEEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable); rgblight_mode_noeeprom(rgblight_config.mode); } void rgblight_disable(void) { rgblight_config.enable = 0; eeconfig_update_rgblight(rgblight_config.raw); dprintf("rgblight disable [EEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable); rgblight_timer_disable(); RGBLIGHT_SPLIT_SET_CHANGE_MODE; rgblight_set(); } void rgblight_disable_noeeprom(void) { rgblight_config.enable = 0; dprintf("rgblight disable [NOEEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable); rgblight_timer_disable(); RGBLIGHT_SPLIT_SET_CHANGE_MODE; rgblight_set(); } void rgblight_enabled_noeeprom(bool state) { state ? rgblight_enable_noeeprom() : rgblight_disable_noeeprom(); } bool rgblight_is_enabled(void) { return rgblight_config.enable; } void rgblight_increase_hue_helper(bool write_to_eeprom) { uint8_t hue = rgblight_config.hue + RGBLIGHT_HUE_STEP; rgblight_sethsv_eeprom_helper(hue, rgblight_config.sat, rgblight_config.val, write_to_eeprom); } void rgblight_increase_hue_noeeprom(void) { rgblight_increase_hue_helper(false); } void rgblight_increase_hue(void) { rgblight_increase_hue_helper(true); } void rgblight_decrease_hue_helper(bool write_to_eeprom) { uint8_t hue = rgblight_config.hue - RGBLIGHT_HUE_STEP; rgblight_sethsv_eeprom_helper(hue, rgblight_config.sat, rgblight_config.val, write_to_eeprom); } void rgblight_decrease_hue_noeeprom(void) { rgblight_decrease_hue_helper(false); } void rgblight_decrease_hue(void) { rgblight_decrease_hue_helper(true); } void rgblight_increase_sat_helper(bool write_to_eeprom) { uint8_t sat = qadd8(rgblight_config.sat, RGBLIGHT_SAT_STEP); rgblight_sethsv_eeprom_helper(rgblight_config.hue, sat, rgblight_config.val, write_to_eeprom); } void rgblight_increase_sat_noeeprom(void) { rgblight_increase_sat_helper(false); } void rgblight_increase_sat(void) { rgblight_increase_sat_helper(true); } void rgblight_decrease_sat_helper(bool write_to_eeprom) { uint8_t sat = qsub8(rgblight_config.sat, RGBLIGHT_SAT_STEP); rgblight_sethsv_eeprom_helper(rgblight_config.hue, sat, rgblight_config.val, write_to_eeprom); } void rgblight_decrease_sat_noeeprom(void) { rgblight_decrease_sat_helper(false); } void rgblight_decrease_sat(void) { rgblight_decrease_sat_helper(true); } void rgblight_increase_val_helper(bool write_to_eeprom) { uint8_t val = qadd8(rgblight_config.val, RGBLIGHT_VAL_STEP); rgblight_sethsv_eeprom_helper(rgblight_config.hue, rgblight_config.sat, val, write_to_eeprom); } void rgblight_increase_val_noeeprom(void) { rgblight_increase_val_helper(false); } void rgblight_increase_val(void) { rgblight_increase_val_helper(true); } void rgblight_decrease_val_helper(bool write_to_eeprom) { uint8_t val = qsub8(rgblight_config.val, RGBLIGHT_VAL_STEP); rgblight_sethsv_eeprom_helper(rgblight_config.hue, rgblight_config.sat, val, write_to_eeprom); } void rgblight_decrease_val_noeeprom(void) { rgblight_decrease_val_helper(false); } void rgblight_decrease_val(void) { rgblight_decrease_val_helper(true); } void rgblight_increase_speed_helper(bool write_to_eeprom) { if (rgblight_config.speed < 3) rgblight_config.speed++; // RGBLIGHT_SPLIT_SET_CHANGE_HSVS; // NEED? if (write_to_eeprom) { eeconfig_update_rgblight(rgblight_config.raw); } } void rgblight_increase_speed(void) { rgblight_increase_speed_helper(true); } void rgblight_increase_speed_noeeprom(void) { rgblight_increase_speed_helper(false); } void rgblight_decrease_speed_helper(bool write_to_eeprom) { if (rgblight_config.speed > 0) rgblight_config.speed--; // RGBLIGHT_SPLIT_SET_CHANGE_HSVS; // NEED?? if (write_to_eeprom) { eeconfig_update_rgblight(rgblight_config.raw); } } void rgblight_decrease_speed(void) { rgblight_decrease_speed_helper(true); } void rgblight_decrease_speed_noeeprom(void) { rgblight_decrease_speed_helper(false); } void rgblight_sethsv_noeeprom_old(uint8_t hue, uint8_t sat, uint8_t val) { if (rgblight_config.enable) { rgb_led_t tmp_led; sethsv(hue, sat, val, &tmp_led); rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b); } } void rgblight_sethsv_eeprom_helper(uint8_t hue, uint8_t sat, uint8_t val, bool write_to_eeprom) { if (rgblight_config.enable) { #ifdef RGBLIGHT_SPLIT if (rgblight_config.hue != hue || rgblight_config.sat != sat || rgblight_config.val != val) { RGBLIGHT_SPLIT_SET_CHANGE_HSVS; } #endif rgblight_status.base_mode = mode_base_table[rgblight_config.mode]; if (rgblight_config.mode == RGBLIGHT_MODE_STATIC_LIGHT) { // same static color rgb_led_t tmp_led; #ifdef RGBLIGHT_LAYERS_RETAIN_VAL // needed for rgblight_layers_write() to get the new val, since it reads rgblight_config.val rgblight_config.val = val; #endif sethsv(hue, sat, val, &tmp_led); rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b); } else { // all LEDs in same color if (1 == 0) { // dummy } #ifdef RGBLIGHT_EFFECT_BREATHING else if (rgblight_status.base_mode == RGBLIGHT_MODE_BREATHING) { // breathing mode, ignore the change of val, use in memory value instead val = rgblight_config.val; } #endif #ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD else if (rgblight_status.base_mode == RGBLIGHT_MODE_RAINBOW_MOOD) { // rainbow mood, ignore the change of hue hue = rgblight_config.hue; } #endif #ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL else if (rgblight_status.base_mode == RGBLIGHT_MODE_RAINBOW_SWIRL) { // rainbow swirl, ignore the change of hue hue = rgblight_config.hue; } #endif #ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT else if (rgblight_status.base_mode == RGBLIGHT_MODE_STATIC_GRADIENT) { // static gradient uint8_t delta = rgblight_config.mode - rgblight_status.base_mode; bool direction = (delta % 2) == 0; uint8_t range = pgm_read_byte(&RGBLED_GRADIENT_RANGES[delta / 2]); for (uint8_t i = 0; i < rgblight_ranges.effect_num_leds; i++) { uint8_t _hue = ((uint16_t)i * (uint16_t)range) / rgblight_ranges.effect_num_leds; if (direction) { _hue = hue + _hue; } else { _hue = hue - _hue; } dprintf("rgblight rainbow set hsv: %d,%d,%d,%u\n", i, _hue, direction, range); sethsv(_hue, sat, val, (rgb_led_t *)&led[i + rgblight_ranges.effect_start_pos]); } # ifdef RGBLIGHT_LAYERS_RETAIN_VAL // needed for rgblight_layers_write() to get the new val, since it reads rgblight_config.val rgblight_config.val = val; # endif rgblight_set(); } #endif } rgblight_config.hue = hue; rgblight_config.sat = sat; rgblight_config.val = val; if (write_to_eeprom) { eeconfig_update_rgblight(rgblight_config.raw); dprintf("rgblight set hsv [EEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val); } else { dprintf("rgblight set hsv [NOEEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val); } } } void rgblight_sethsv(uint8_t hue, uint8_t sat, uint8_t val) { rgblight_sethsv_eeprom_helper(hue, sat, val, true); } void rgblight_sethsv_noeeprom(uint8_t hue, uint8_t sat, uint8_t val) { rgblight_sethsv_eeprom_helper(hue, sat, val, false); } uint8_t rgblight_get_speed(void) { return rgblight_config.speed; } void rgblight_set_speed_eeprom_helper(uint8_t speed, bool write_to_eeprom) { rgblight_config.speed = speed; if (write_to_eeprom) { eeconfig_update_rgblight(rgblight_config.raw); dprintf("rgblight set speed [EEPROM]: %u\n", rgblight_config.speed); } else { dprintf("rgblight set speed [NOEEPROM]: %u\n", rgblight_config.speed); } } void rgblight_set_speed(uint8_t speed) { rgblight_set_speed_eeprom_helper(speed, true); } void rgblight_set_speed_noeeprom(uint8_t speed) { rgblight_set_speed_eeprom_helper(speed, false); } uint8_t rgblight_get_hue(void) { return rgblight_config.hue; } uint8_t rgblight_get_sat(void) { return rgblight_config.sat; } uint8_t rgblight_get_val(void) { return rgblight_config.val; } HSV rgblight_get_hsv(void) { return (HSV){rgblight_config.hue, rgblight_config.sat, rgblight_config.val}; } void rgblight_setrgb(uint8_t r, uint8_t g, uint8_t b) { if (!rgblight_config.enable) { return; } for (uint8_t i = rgblight_ranges.effect_start_pos; i < rgblight_ranges.effect_end_pos; i++) { led[i].r = r; led[i].g = g; led[i].b = b; #ifdef RGBW led[i].w = 0; #endif } rgblight_set(); } void rgblight_setrgb_at(uint8_t r, uint8_t g, uint8_t b, uint8_t index) { if (!rgblight_config.enable || index >= RGBLIGHT_LED_COUNT) { return; } led[index].r = r; led[index].g = g; led[index].b = b; #ifdef RGBW led[index].w = 0; #endif rgblight_set(); } void rgblight_sethsv_at(uint8_t hue, uint8_t sat, uint8_t val, uint8_t index) { if (!rgblight_config.enable) { return; } rgb_led_t tmp_led; sethsv(hue, sat, val, &tmp_led); rgblight_setrgb_at(tmp_led.r, tmp_led.g, tmp_led.b, index); } #if defined(RGBLIGHT_EFFECT_BREATHING) || defined(RGBLIGHT_EFFECT_RAINBOW_MOOD) || defined(RGBLIGHT_EFFECT_RAINBOW_SWIRL) || defined(RGBLIGHT_EFFECT_SNAKE) || defined(RGBLIGHT_EFFECT_KNIGHT) || defined(RGBLIGHT_EFFECT_TWINKLE) static uint8_t get_interval_time(const uint8_t *default_interval_address, uint8_t velocikey_min, uint8_t velocikey_max) { return # ifdef VELOCIKEY_ENABLE rgblight_velocikey_enabled() ? rgblight_velocikey_match_speed(velocikey_min, velocikey_max) : # endif pgm_read_byte(default_interval_address); } #endif void rgblight_setrgb_range(uint8_t r, uint8_t g, uint8_t b, uint8_t start, uint8_t end) { if (!rgblight_config.enable || start < 0 || start >= end || end > RGBLIGHT_LED_COUNT) { return; } for (uint8_t i = start; i < end; i++) { led[i].r = r; led[i].g = g; led[i].b = b; #ifdef RGBW led[i].w = 0; #endif } rgblight_set(); } void rgblight_sethsv_range(uint8_t hue, uint8_t sat, uint8_t val, uint8_t start, uint8_t end) { if (!rgblight_config.enable) { return; } rgb_led_t tmp_led; sethsv(hue, sat, val, &tmp_led); rgblight_setrgb_range(tmp_led.r, tmp_led.g, tmp_led.b, start, end); } #ifndef RGBLIGHT_SPLIT void rgblight_setrgb_master(uint8_t r, uint8_t g, uint8_t b) { rgblight_setrgb_range(r, g, b, 0, (uint8_t)RGBLIGHT_LED_COUNT / 2); } void rgblight_setrgb_slave(uint8_t r, uint8_t g, uint8_t b) { rgblight_setrgb_range(r, g, b, (uint8_t)RGBLIGHT_LED_COUNT / 2, (uint8_t)RGBLIGHT_LED_COUNT); } void rgblight_sethsv_master(uint8_t hue, uint8_t sat, uint8_t val) { rgblight_sethsv_range(hue, sat, val, 0, (uint8_t)RGBLIGHT_LED_COUNT / 2); } void rgblight_sethsv_slave(uint8_t hue, uint8_t sat, uint8_t val) { rgblight_sethsv_range(hue, sat, val, (uint8_t)RGBLIGHT_LED_COUNT / 2, (uint8_t)RGBLIGHT_LED_COUNT); } #endif // ifndef RGBLIGHT_SPLIT #ifdef RGBLIGHT_LAYERS void rgblight_set_layer_state(uint8_t layer, bool enabled) { rgblight_layer_mask_t mask = (rgblight_layer_mask_t)1 << layer; if (enabled) { rgblight_status.enabled_layer_mask |= mask; } else { rgblight_status.enabled_layer_mask &= ~mask; } RGBLIGHT_SPLIT_SET_CHANGE_LAYERS; // Calling rgblight_set() here (directly or indirectly) could // potentially cause timing issues when there are multiple // successive calls to rgblight_set_layer_state(). Instead, // set a flag and do it the next time rgblight_task() runs. deferred_set_layer_state = true; } bool rgblight_get_layer_state(uint8_t layer) { rgblight_layer_mask_t mask = (rgblight_layer_mask_t)1 << layer; return (rgblight_status.enabled_layer_mask & mask) != 0; } // Write any enabled LED layers into the buffer static void rgblight_layers_write(void) { # ifdef RGBLIGHT_LAYERS_RETAIN_VAL uint8_t current_val = rgblight_get_val(); # endif uint8_t i = 0; // For each layer for (const rgblight_segment_t *const *layer_ptr = rgblight_layers; i < RGBLIGHT_MAX_LAYERS; layer_ptr++, i++) { if (!rgblight_get_layer_state(i)) { continue; // Layer is disabled } const rgblight_segment_t *segment_ptr = pgm_read_ptr(layer_ptr); if (segment_ptr == NULL) { break; // No more layers } // For each segment while (1) { rgblight_segment_t segment; memcpy_P(&segment, segment_ptr, sizeof(rgblight_segment_t)); if (segment.index == RGBLIGHT_END_SEGMENT_INDEX) { break; // No more segments } // Write segment.count LEDs rgb_led_t *const limit = &led[MIN(segment.index + segment.count, RGBLIGHT_LED_COUNT)]; for (rgb_led_t *led_ptr = &led[segment.index]; led_ptr < limit; led_ptr++) { # ifdef RGBLIGHT_LAYERS_RETAIN_VAL sethsv(segment.hue, segment.sat, current_val, led_ptr); # else sethsv(segment.hue, segment.sat, segment.val, led_ptr); # endif } segment_ptr++; } } } # ifdef RGBLIGHT_LAYER_BLINK rgblight_layer_mask_t _blinking_layer_mask = 0; static uint16_t _repeat_timer; static uint8_t _times_remaining; static uint16_t _dur; void rgblight_blink_layer(uint8_t layer, uint16_t duration_ms) { rgblight_blink_layer_repeat(layer, duration_ms, 1); } void rgblight_blink_layer_repeat(uint8_t layer, uint16_t duration_ms, uint8_t times) { if (times > UINT8_MAX / 2) { times = UINT8_MAX / 2; } _times_remaining = times * 2; _dur = duration_ms; rgblight_set_layer_state(layer, true); _times_remaining--; _blinking_layer_mask |= (rgblight_layer_mask_t)1 << layer; _repeat_timer = sync_timer_read() + duration_ms; } void rgblight_unblink_layer(uint8_t layer) { rgblight_set_layer_state(layer, false); _blinking_layer_mask &= ~((rgblight_layer_mask_t)1 << layer); } void rgblight_unblink_all_but_layer(uint8_t layer) { for (uint8_t i = 0; i < RGBLIGHT_MAX_LAYERS; i++) { if (i != layer) { if ((_blinking_layer_mask & (rgblight_layer_mask_t)1 << i) != 0) { rgblight_unblink_layer(i); } } } } void rgblight_blink_layer_repeat_helper(void) { if (_blinking_layer_mask != 0 && timer_expired(sync_timer_read(), _repeat_timer)) { for (uint8_t layer = 0; layer < RGBLIGHT_MAX_LAYERS; layer++) { if ((_blinking_layer_mask & (rgblight_layer_mask_t)1 << layer) != 0) { if (_times_remaining % 2 == 1) { rgblight_set_layer_state(layer, false); } else { rgblight_set_layer_state(layer, true); } } } _times_remaining--; if (_times_remaining <= 0) { _blinking_layer_mask = 0; } else { _repeat_timer = sync_timer_read() + _dur; } } } # endif #endif #ifdef RGBLIGHT_SLEEP void rgblight_suspend(void) { rgblight_timer_disable(); if (!is_suspended) { is_suspended = true; pre_suspend_enabled = rgblight_config.enable; # ifdef RGBLIGHT_LAYER_BLINK // make sure any layer blinks don't come back after suspend rgblight_status.enabled_layer_mask &= ~_blinking_layer_mask; _blinking_layer_mask = 0; # endif rgblight_disable_noeeprom(); } } void rgblight_wakeup(void) { is_suspended = false; if (pre_suspend_enabled) { rgblight_enable_noeeprom(); } # ifdef RGBLIGHT_LAYERS_OVERRIDE_RGB_OFF // Need this or else the LEDs won't be set else if (rgblight_status.enabled_layer_mask != 0) { rgblight_set(); } # endif rgblight_timer_enable(); } #endif void rgblight_set(void) { rgb_led_t *start_led; uint8_t num_leds = rgblight_ranges.clipping_num_leds; if (!rgblight_config.enable) { for (uint8_t i = rgblight_ranges.effect_start_pos; i < rgblight_ranges.effect_end_pos; i++) { led[i].r = 0; led[i].g = 0; led[i].b = 0; #ifdef RGBW led[i].w = 0; #endif } } #ifdef RGBLIGHT_LAYERS if (rgblight_layers != NULL # if !defined(RGBLIGHT_LAYERS_OVERRIDE_RGB_OFF) && rgblight_config.enable # elif defined(RGBLIGHT_SLEEP) && !is_suspended # endif ) { rgblight_layers_write(); } #endif #ifdef RGBLIGHT_LED_MAP rgb_led_t led0[RGBLIGHT_LED_COUNT]; for (uint8_t i = 0; i < RGBLIGHT_LED_COUNT; i++) { led0[i] = led[pgm_read_byte(&led_map[i])]; } start_led = led0 + rgblight_ranges.clipping_start_pos; #else start_led = led + rgblight_ranges.clipping_start_pos; #endif #ifdef RGBW for (uint8_t i = 0; i < num_leds; i++) { convert_rgb_to_rgbw(&start_led[i]); } #endif rgblight_driver.setleds(start_led, num_leds); } #ifdef RGBLIGHT_SPLIT /* for split keyboard master side */ uint8_t rgblight_get_change_flags(void) { return rgblight_status.change_flags; } void rgblight_clear_change_flags(void) { rgblight_status.change_flags = 0; } void rgblight_get_syncinfo(rgblight_syncinfo_t *syncinfo) { syncinfo->config = rgblight_config; syncinfo->status = rgblight_status; } /* for split keyboard slave side */ void rgblight_update_sync(rgblight_syncinfo_t *syncinfo, bool write_to_eeprom) { # ifdef RGBLIGHT_LAYERS if (syncinfo->status.change_flags & RGBLIGHT_STATUS_CHANGE_LAYERS) { rgblight_status.enabled_layer_mask = syncinfo->status.enabled_layer_mask; } # endif if (syncinfo->status.change_flags & RGBLIGHT_STATUS_CHANGE_MODE) { if (syncinfo->config.enable) { rgblight_config.enable = 1; // == rgblight_enable_noeeprom(); rgblight_mode_eeprom_helper(syncinfo->config.mode, write_to_eeprom); } else { rgblight_disable_noeeprom(); } } if (syncinfo->status.change_flags & RGBLIGHT_STATUS_CHANGE_HSVS) { rgblight_sethsv_eeprom_helper(syncinfo->config.hue, syncinfo->config.sat, syncinfo->config.val, write_to_eeprom); // rgblight_config.speed = config->speed; // NEED??? } # ifdef RGBLIGHT_USE_TIMER if (syncinfo->status.change_flags & RGBLIGHT_STATUS_CHANGE_TIMER) { if (syncinfo->status.timer_enabled) { rgblight_timer_enable(); } else { rgblight_timer_disable(); } } # ifndef RGBLIGHT_SPLIT_NO_ANIMATION_SYNC if (syncinfo->status.change_flags & RGBLIGHT_STATUS_ANIMATION_TICK) { animation_status.restart = true; } # endif /* RGBLIGHT_SPLIT_NO_ANIMATION_SYNC */ # endif /* RGBLIGHT_USE_TIMER */ } #endif /* RGBLIGHT_SPLIT */ #ifdef RGBLIGHT_USE_TIMER typedef void (*effect_func_t)(animation_status_t *anim); // Animation timer -- use system timer (AVR Timer0) void rgblight_timer_init(void) { rgblight_status.timer_enabled = false; RGBLIGHT_SPLIT_SET_CHANGE_TIMER_ENABLE; } void rgblight_timer_enable(void) { if (!is_static_effect(rgblight_config.mode)) { rgblight_status.timer_enabled = true; } animation_status.last_timer = sync_timer_read(); RGBLIGHT_SPLIT_SET_CHANGE_TIMER_ENABLE; dprintf("rgblight timer enabled.\n"); } void rgblight_timer_disable(void) { rgblight_status.timer_enabled = false; RGBLIGHT_SPLIT_SET_CHANGE_TIMER_ENABLE; dprintf("rgblight timer disable.\n"); } void rgblight_timer_toggle(void) { dprintf("rgblight timer toggle.\n"); if (rgblight_status.timer_enabled) { rgblight_timer_disable(); } else { rgblight_timer_enable(); } } void rgblight_show_solid_color(uint8_t r, uint8_t g, uint8_t b) { rgblight_enable(); rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT); rgblight_setrgb(r, g, b); } static void rgblight_effect_dummy(animation_status_t *anim) { // do nothing /******** dprintf("rgblight_task() what happened?\n"); dprintf("is_static_effect %d\n", is_static_effect(rgblight_config.mode)); dprintf("mode = %d, base_mode = %d, timer_enabled %d, ", rgblight_config.mode, rgblight_status.base_mode, rgblight_status.timer_enabled); dprintf("last_timer = %d\n",anim->last_timer); **/ } void rgblight_timer_task(void) { if (rgblight_status.timer_enabled) { effect_func_t effect_func = rgblight_effect_dummy; uint16_t interval_time = 2000; // dummy interval uint8_t delta = rgblight_config.mode - rgblight_status.base_mode; animation_status.delta = delta; // static light mode, do nothing here if (1 == 0) { // dummy } # ifdef RGBLIGHT_EFFECT_BREATHING else if (rgblight_status.base_mode == RGBLIGHT_MODE_BREATHING) { // breathing mode interval_time = get_interval_time(&RGBLED_BREATHING_INTERVALS[delta], 1, 100); effect_func = rgblight_effect_breathing; } # endif # ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD else if (rgblight_status.base_mode == RGBLIGHT_MODE_RAINBOW_MOOD) { // rainbow mood mode interval_time = get_interval_time(&RGBLED_RAINBOW_MOOD_INTERVALS[delta], 5, 100); effect_func = rgblight_effect_rainbow_mood; } # endif # ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL else if (rgblight_status.base_mode == RGBLIGHT_MODE_RAINBOW_SWIRL) { // rainbow swirl mode interval_time = get_interval_time(&RGBLED_RAINBOW_SWIRL_INTERVALS[delta / 2], 1, 100); effect_func = rgblight_effect_rainbow_swirl; } # endif # ifdef RGBLIGHT_EFFECT_SNAKE else if (rgblight_status.base_mode == RGBLIGHT_MODE_SNAKE) { // snake mode interval_time = get_interval_time(&RGBLED_SNAKE_INTERVALS[delta / 2], 1, 200); effect_func = rgblight_effect_snake; } # endif # ifdef RGBLIGHT_EFFECT_KNIGHT else if (rgblight_status.base_mode == RGBLIGHT_MODE_KNIGHT) { // knight mode interval_time = get_interval_time(&RGBLED_KNIGHT_INTERVALS[delta], 5, 100); effect_func = rgblight_effect_knight; } # endif # ifdef RGBLIGHT_EFFECT_CHRISTMAS else if (rgblight_status.base_mode == RGBLIGHT_MODE_CHRISTMAS) { // christmas mode interval_time = RGBLIGHT_EFFECT_CHRISTMAS_INTERVAL; effect_func = (effect_func_t)rgblight_effect_christmas; } # endif # ifdef RGBLIGHT_EFFECT_RGB_TEST else if (rgblight_status.base_mode == RGBLIGHT_MODE_RGB_TEST) { // RGB test mode interval_time = pgm_read_word(&RGBLED_RGBTEST_INTERVALS[0]); effect_func = (effect_func_t)rgblight_effect_rgbtest; } # endif # ifdef RGBLIGHT_EFFECT_ALTERNATING else if (rgblight_status.base_mode == RGBLIGHT_MODE_ALTERNATING) { interval_time = 500; effect_func = (effect_func_t)rgblight_effect_alternating; } # endif # ifdef RGBLIGHT_EFFECT_TWINKLE else if (rgblight_status.base_mode == RGBLIGHT_MODE_TWINKLE) { interval_time = get_interval_time(&RGBLED_TWINKLE_INTERVALS[delta % 3], 5, 30); effect_func = (effect_func_t)rgblight_effect_twinkle; } # endif if (animation_status.restart) { animation_status.restart = false; animation_status.last_timer = sync_timer_read(); animation_status.pos16 = 0; // restart signal to local each effect } uint16_t now = sync_timer_read(); if (timer_expired(now, animation_status.last_timer)) { # if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC) static uint16_t report_last_timer = 0; static bool tick_flag = false; uint16_t oldpos16; if (tick_flag) { tick_flag = false; if (timer_expired(now, report_last_timer)) { report_last_timer += 30000; dprintf("rgblight animation tick report to slave\n"); RGBLIGHT_SPLIT_ANIMATION_TICK; } } oldpos16 = animation_status.pos16; # endif animation_status.last_timer += interval_time; effect_func(&animation_status); # if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC) if (animation_status.pos16 == 0 && oldpos16 != 0) { tick_flag = true; } # endif } } # ifdef RGBLIGHT_LAYERS # ifdef RGBLIGHT_LAYER_BLINK rgblight_blink_layer_repeat_helper(); # endif if (deferred_set_layer_state) { deferred_set_layer_state = false; // Static modes don't have a ticker running to update the LEDs if (rgblight_status.timer_enabled == false) { rgblight_mode_noeeprom(rgblight_config.mode); } # ifdef RGBLIGHT_LAYERS_OVERRIDE_RGB_OFF // If not enabled, then nothing else will actually set the LEDs... if (!rgblight_config.enable) { rgblight_set(); } # endif } # endif } #endif /* RGBLIGHT_USE_TIMER */ #if defined(RGBLIGHT_EFFECT_BREATHING) || defined(RGBLIGHT_EFFECT_TWINKLE) # ifndef RGBLIGHT_EFFECT_BREATHE_CENTER # ifndef RGBLIGHT_BREATHE_TABLE_SIZE # define RGBLIGHT_BREATHE_TABLE_SIZE 256 // 256 or 128 or 64 # endif # include # endif static uint8_t breathe_calc(uint8_t pos) { // http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/ # ifdef RGBLIGHT_EFFECT_BREATHE_TABLE return pgm_read_byte(&rgblight_effect_breathe_table[pos / table_scale]); # else return (exp(sin((pos / 255.0) * M_PI)) - RGBLIGHT_EFFECT_BREATHE_CENTER / M_E) * (RGBLIGHT_EFFECT_BREATHE_MAX / (M_E - 1 / M_E)); # endif } #endif // Effects #ifdef RGBLIGHT_EFFECT_BREATHING __attribute__((weak)) const uint8_t RGBLED_BREATHING_INTERVALS[] PROGMEM = {30, 20, 10, 5}; void rgblight_effect_breathing(animation_status_t *anim) { uint8_t val = breathe_calc(anim->pos); rgblight_sethsv_noeeprom_old(rgblight_config.hue, rgblight_config.sat, val); anim->pos = (anim->pos + 1); } #endif #ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD __attribute__((weak)) const uint8_t RGBLED_RAINBOW_MOOD_INTERVALS[] PROGMEM = {120, 60, 30}; void rgblight_effect_rainbow_mood(animation_status_t *anim) { rgblight_sethsv_noeeprom_old(anim->current_hue, rgblight_config.sat, rgblight_config.val); anim->current_hue++; } #endif #ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL # ifndef RGBLIGHT_RAINBOW_SWIRL_RANGE # define RGBLIGHT_RAINBOW_SWIRL_RANGE 255 # endif __attribute__((weak)) const uint8_t RGBLED_RAINBOW_SWIRL_INTERVALS[] PROGMEM = {100, 50, 20}; void rgblight_effect_rainbow_swirl(animation_status_t *anim) { uint8_t hue; uint8_t i; for (i = 0; i < rgblight_ranges.effect_num_leds; i++) { hue = (RGBLIGHT_RAINBOW_SWIRL_RANGE / rgblight_ranges.effect_num_leds * i + anim->current_hue); sethsv(hue, rgblight_config.sat, rgblight_config.val, (rgb_led_t *)&led[i + rgblight_ranges.effect_start_pos]); } rgblight_set(); if (anim->delta % 2) { anim->current_hue++; } else { anim->current_hue--; } } #endif #ifdef RGBLIGHT_EFFECT_SNAKE __attribute__((weak)) const uint8_t RGBLED_SNAKE_INTERVALS[] PROGMEM = {100, 50, 20}; void rgblight_effect_snake(animation_status_t *anim) { static uint8_t pos = 0; uint8_t i, j; int8_t k; int8_t increment = 1; if (anim->delta % 2) { increment = -1; } # if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC) if (anim->pos == 0) { // restart signal if (increment == 1) { pos = rgblight_ranges.effect_num_leds - 1; } else { pos = 0; } anim->pos = 1; } # endif for (i = 0; i < rgblight_ranges.effect_num_leds; i++) { rgb_led_t *ledp = led + i + rgblight_ranges.effect_start_pos; ledp->r = 0; ledp->g = 0; ledp->b = 0; # ifdef RGBW ledp->w = 0; # endif for (j = 0; j < RGBLIGHT_EFFECT_SNAKE_LENGTH; j++) { k = pos + j * increment; if (k > RGBLIGHT_LED_COUNT) { k = k % (RGBLIGHT_LED_COUNT); } if (k < 0) { k = k + rgblight_ranges.effect_num_leds; } if (i == k) { sethsv(rgblight_config.hue, rgblight_config.sat, (uint8_t)(rgblight_config.val * (RGBLIGHT_EFFECT_SNAKE_LENGTH - j) / RGBLIGHT_EFFECT_SNAKE_LENGTH), ledp); } } } rgblight_set(); if (increment == 1) { if (pos - RGBLIGHT_EFFECT_SNAKE_INCREMENT < 0) { pos = rgblight_ranges.effect_num_leds - 1; # if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC) anim->pos = 0; # endif } else { pos -= RGBLIGHT_EFFECT_SNAKE_INCREMENT; # if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC) anim->pos = 1; # endif } } else { pos = (pos + RGBLIGHT_EFFECT_SNAKE_INCREMENT) % rgblight_ranges.effect_num_leds; # if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC) anim->pos = pos; # endif } } #endif #ifdef RGBLIGHT_EFFECT_KNIGHT __attribute__((weak)) const uint8_t RGBLED_KNIGHT_INTERVALS[] PROGMEM = {127, 63, 31}; void rgblight_effect_knight(animation_status_t *anim) { static int8_t low_bound = 0; static int8_t high_bound = RGBLIGHT_EFFECT_KNIGHT_LENGTH - 1; static int8_t increment = RGBLIGHT_EFFECT_KNIGHT_INCREMENT; uint8_t i, cur; # if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC) if (anim->pos == 0) { // restart signal anim->pos = 1; low_bound = 0; high_bound = RGBLIGHT_EFFECT_KNIGHT_LENGTH - 1; increment = 1; } # endif // Set all the LEDs to 0 for (i = rgblight_ranges.effect_start_pos; i < rgblight_ranges.effect_end_pos; i++) { led[i].r = 0; led[i].g = 0; led[i].b = 0; # ifdef RGBW led[i].w = 0; # endif } // Determine which LEDs should be lit up for (i = 0; i < RGBLIGHT_EFFECT_KNIGHT_LED_NUM; i++) { cur = (i + RGBLIGHT_EFFECT_KNIGHT_OFFSET) % rgblight_ranges.effect_num_leds + rgblight_ranges.effect_start_pos; if (i >= low_bound && i <= high_bound) { sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, (rgb_led_t *)&led[cur]); } else { led[cur].r = 0; led[cur].g = 0; led[cur].b = 0; # ifdef RGBW led[cur].w = 0; # endif } } rgblight_set(); // Move from low_bound to high_bound changing the direction we increment each // time a boundary is hit. low_bound += increment; high_bound += increment; if (high_bound <= 0 || low_bound >= RGBLIGHT_EFFECT_KNIGHT_LED_NUM - 1) { increment = -increment; # if defined(RGBLIGHT_SPLIT) && !defined(RGBLIGHT_SPLIT_NO_ANIMATION_SYNC) if (increment == 1) { anim->pos = 0; } # endif } } #endif #ifdef RGBLIGHT_EFFECT_CHRISTMAS # define CUBED(x) ((x) * (x) * (x)) /** * Christmas lights effect, with a smooth animation between red & green. */ void rgblight_effect_christmas(animation_status_t *anim) { static int8_t increment = 1; const uint8_t max_pos = 32; const uint8_t hue_green = 85; uint32_t xa; uint8_t hue, val; uint8_t i; // The effect works by animating anim->pos from 0 to 32 and back to 0. // The pos is used in a cubic bezier formula to ease-in-out between red and green, leaving the interpolated colors visible as short as possible. xa = CUBED((uint32_t)anim->pos); hue = ((uint32_t)hue_green) * xa / (xa + CUBED((uint32_t)(max_pos - anim->pos))); // Additionally, these interpolated colors get shown with a slightly darker value, to make them less prominent than the main colors. val = 255 - (3 * (hue < hue_green / 2 ? hue : hue_green - hue) / 2); for (i = 0; i < rgblight_ranges.effect_num_leds; i++) { uint8_t local_hue = (i / RGBLIGHT_EFFECT_CHRISTMAS_STEP) % 2 ? hue : hue_green - hue; sethsv(local_hue, rgblight_config.sat, val, (rgb_led_t *)&led[i + rgblight_ranges.effect_start_pos]); } rgblight_set(); if (anim->pos == 0) { increment = 1; } else if (anim->pos == max_pos) { increment = -1; } anim->pos += increment; } #endif #ifdef RGBLIGHT_EFFECT_RGB_TEST __attribute__((weak)) const uint16_t RGBLED_RGBTEST_INTERVALS[] PROGMEM = {1024}; void rgblight_effect_rgbtest(animation_status_t *anim) { static uint8_t maxval = 0; uint8_t g; uint8_t r; uint8_t b; if (maxval == 0) { rgb_led_t tmp_led; sethsv(0, 255, RGBLIGHT_LIMIT_VAL, &tmp_led); maxval = tmp_led.r; } g = r = b = 0; switch (anim->pos) { case 0: r = maxval; break; case 1: g = maxval; break; case 2: b = maxval; break; } rgblight_setrgb(r, g, b); anim->pos = (anim->pos + 1) % 3; } #endif #ifdef RGBLIGHT_EFFECT_ALTERNATING void rgblight_effect_alternating(animation_status_t *anim) { for (int i = 0; i < rgblight_ranges.effect_num_leds; i++) { rgb_led_t *ledp = led + i + rgblight_ranges.effect_start_pos; if (i < rgblight_ranges.effect_num_leds / 2 && anim->pos) { sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, ledp); } else if (i >= rgblight_ranges.effect_num_leds / 2 && !anim->pos) { sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, ledp); } else { sethsv(rgblight_config.hue, rgblight_config.sat, 0, ledp); } } rgblight_set(); anim->pos = (anim->pos + 1) % 2; } #endif #ifdef RGBLIGHT_EFFECT_TWINKLE __attribute__((weak)) const uint8_t RGBLED_TWINKLE_INTERVALS[] PROGMEM = {30, 15, 5}; typedef struct PACKED { HSV hsv; uint8_t life; uint8_t max_life; } TwinkleState; static TwinkleState led_twinkle_state[RGBLIGHT_LED_COUNT]; void rgblight_effect_twinkle(animation_status_t *anim) { const bool random_color = anim->delta / 3; const bool restart = anim->pos == 0; anim->pos = 1; const uint8_t bottom = breathe_calc(0); const uint8_t top = breathe_calc(127); uint8_t frac(uint8_t n, uint8_t d) { return (uint16_t)255 * n / d; } uint8_t scale(uint16_t v, uint8_t scale) { return (v * scale) >> 8; } const uint8_t trigger = scale((uint16_t)0xFF * RGBLIGHT_EFFECT_TWINKLE_PROBABILITY, 127 + rgblight_config.val / 2); for (uint8_t i = 0; i < rgblight_ranges.effect_num_leds; i++) { TwinkleState *t = &(led_twinkle_state[i]); HSV * c = &(t->hsv); if (!random_color) { c->h = rgblight_config.hue; c->s = rgblight_config.sat; } if (restart) { // Restart t->life = 0; c->v = 0; } else if (t->life) { // This LED is already on, either brightening or dimming t->life--; uint8_t unscaled = frac(breathe_calc(frac(t->life, t->max_life)) - bottom, top - bottom); c->v = scale(rgblight_config.val, unscaled); } else if ((rand() % 0xFF) < trigger) { // This LED is off, but was randomly selected to start brightening if (random_color) { c->h = rand() % 0xFF; c->s = (rand() % (rgblight_config.sat / 2)) + (rgblight_config.sat / 2); } c->v = 0; t->max_life = MAX(20, MIN(RGBLIGHT_EFFECT_TWINKLE_LIFE, rgblight_config.val)); t->life = t->max_life; } else { // This LED is off, and was NOT selected to start brightening } rgb_led_t *ledp = led + i + rgblight_ranges.effect_start_pos; sethsv(c->h, c->s, c->v, ledp); } rgblight_set(); } #endif void preprocess_rgblight(void) { #ifdef VELOCIKEY_ENABLE if (rgblight_velocikey_enabled()) { rgblight_velocikey_accelerate(); } #endif } void rgblight_task(void) { #ifdef RGBLIGHT_USE_TIMER rgblight_timer_task(); #endif #ifdef VELOCIKEY_ENABLE if (rgblight_velocikey_enabled()) { rgblight_velocikey_decelerate(); } #endif } #ifdef VELOCIKEY_ENABLE # define TYPING_SPEED_MAX_VALUE 200 static uint8_t typing_speed = 0; bool rgblight_velocikey_enabled(void) { return rgblight_config.velocikey; } void rgblight_velocikey_toggle(void) { dprintf("rgblight velocikey toggle [EEPROM]: rgblight_config.velocikey = %u\n", !rgblight_config.velocikey); rgblight_config.velocikey = !rgblight_config.velocikey; eeconfig_update_rgblight_current(); } void rgblight_velocikey_accelerate(void) { if (typing_speed < TYPING_SPEED_MAX_VALUE) typing_speed += (TYPING_SPEED_MAX_VALUE / 100); } void rgblight_velocikey_decelerate(void) { static uint16_t decay_timer = 0; if (timer_elapsed(decay_timer) > 500 || decay_timer == 0) { if (typing_speed > 0) typing_speed -= 1; // Decay a little faster at half of max speed if (typing_speed > TYPING_SPEED_MAX_VALUE / 2) typing_speed -= 1; // Decay even faster at 3/4 of max speed if (typing_speed > TYPING_SPEED_MAX_VALUE / 4 * 3) typing_speed -= 2; decay_timer = timer_read(); } } uint8_t rgblight_velocikey_match_speed(uint8_t minValue, uint8_t maxValue) { return MAX(minValue, maxValue - (maxValue - minValue) * ((float)typing_speed / TYPING_SPEED_MAX_VALUE)); } #endif