/* Copyright 2020 ZSA Technology Labs, Inc <@zsa> * Copyright 2020 Jack Humbert * Copyright 2020 Christopher Courtney, aka Drashna Jael're (@drashna) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "moonlander.h" #include "i2c_master.h" /* #define MATRIX_ROW_PINS { B10, B11, B12, B13, B14, B15 } outputs #define MATRIX_COL_PINS { A0, A1, A2, A3, A6, A7, B0 } inputs */ /* matrix state(1:on, 0:off) */ extern matrix_row_t matrix[MATRIX_ROWS]; // debounced values extern matrix_row_t raw_matrix[MATRIX_ROWS]; // raw values static matrix_row_t raw_matrix_right[MATRIX_COLS]; #define ROWS_PER_HAND (MATRIX_ROWS / 2) #ifndef MOONLANDER_I2C_TIMEOUT # define MOONLANDER_I2C_TIMEOUT 100 #endif extern bool mcp23018_leds[3]; extern bool is_launching; bool mcp23018_initd = false; static uint8_t mcp23018_reset_loop; uint8_t mcp23018_tx[3]; uint8_t mcp23018_rx[1]; void mcp23018_init(void) { i2c_init(); // #define MCP23_ROW_PINS { GPB5, GBP4, GBP3, GBP2, GBP1, GBP0 } outputs // #define MCP23_COL_PINS { GPA0, GBA1, GBA2, GBA3, GBA4, GBA5, GBA6 } inputs mcp23018_tx[0] = 0x00; // IODIRA mcp23018_tx[1] = 0b00000000; // A is output mcp23018_tx[2] = 0b00111111; // B is inputs if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, MOONLANDER_I2C_TIMEOUT)) { dprintf("error hori\n"); } else { mcp23018_tx[0] = 0x0C; // GPPUA mcp23018_tx[1] = 0b10000000; // A is not pulled-up mcp23018_tx[2] = 0b11111111; // B is pulled-up if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, MOONLANDER_I2C_TIMEOUT)) { dprintf("error hori\n"); } else { mcp23018_initd = is_launching = true; } } } void matrix_init_custom(void) { dprintf("matrix init\n"); // debug_matrix = true; // outputs gpio_set_pin_output(B10); gpio_set_pin_output(B11); gpio_set_pin_output(B12); gpio_set_pin_output(B13); gpio_set_pin_output(B14); gpio_set_pin_output(B15); // inputs gpio_set_pin_input_low(A0); gpio_set_pin_input_low(A1); gpio_set_pin_input_low(A2); gpio_set_pin_input_low(A3); gpio_set_pin_input_low(A6); gpio_set_pin_input_low(A7); gpio_set_pin_input_low(B0); mcp23018_init(); } bool matrix_scan_custom(matrix_row_t current_matrix[]) { bool changed = false; // Try to re-init right side if (!mcp23018_initd) { if (++mcp23018_reset_loop == 0) { // if (++mcp23018_reset_loop >= 1300) { // since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans // this will be approx bit more frequent than once per second print("trying to reset mcp23018\n"); mcp23018_init(); if (!mcp23018_initd) { print("right side not responding\n"); } else { print("right side attached\n"); #ifdef RGB_MATRIX_ENABLE rgb_matrix_init(); #endif } } } matrix_row_t data = 0; // actual matrix for (uint8_t row = 0; row <= ROWS_PER_HAND; row++) { // strobe row switch (row) { case 0: gpio_write_pin_high(B10); break; case 1: gpio_write_pin_high(B11); break; case 2: gpio_write_pin_high(B12); break; case 3: gpio_write_pin_high(B13); break; case 4: gpio_write_pin_high(B14); break; case 5: gpio_write_pin_high(B15); break; case 6: break; // Left hand has 6 rows } // right side if (mcp23018_initd) { // #define MCP23_ROW_PINS { GPB5, GBP4, GBP3, GBP2, GBP1, GBP0 } outputs // #define MCP23_COL_PINS { GPA0, GBA1, GBA2, GBA3, GBA4, GBA5, GBA6 } inputs // select row mcp23018_tx[0] = 0x12; // GPIOA mcp23018_tx[1] = (0b01111111 & ~(1 << (row))) | ((uint8_t)!mcp23018_leds[2] << 7); // activate row mcp23018_tx[2] = ((uint8_t)!mcp23018_leds[1] << 6) | ((uint8_t)!mcp23018_leds[0] << 7); // activate row if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, MOONLANDER_I2C_TIMEOUT)) { dprintf("error hori\n"); mcp23018_initd = false; } // read col mcp23018_tx[0] = 0x13; // GPIOB if (MSG_OK != i2c_read_register(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx[0], &mcp23018_rx[0], 1, MOONLANDER_I2C_TIMEOUT)) { dprintf("error vert\n"); mcp23018_initd = false; } data = ~(mcp23018_rx[0] & 0b00111111); // data = 0x01; } else { data = 0; } if (raw_matrix_right[row] != data) { raw_matrix_right[row] = data; changed = true; } // left side if (row < ROWS_PER_HAND) { // i2c comm incur enough wait time if (!mcp23018_initd) { // need wait to settle pin state matrix_io_delay(); } // read col data data = ( (gpio_read_pin(A0) << 0 ) | (gpio_read_pin(A1) << 1 ) | (gpio_read_pin(A2) << 2 ) | (gpio_read_pin(A3) << 3 ) | (gpio_read_pin(A6) << 4 ) | (gpio_read_pin(A7) << 5 ) | (gpio_read_pin(B0) << 6 ) ); // unstrobe row switch (row) { case 0: gpio_write_pin_low(B10); break; case 1: gpio_write_pin_low(B11); break; case 2: gpio_write_pin_low(B12); break; case 3: gpio_write_pin_low(B13); break; case 4: gpio_write_pin_low(B14); break; case 5: gpio_write_pin_low(B15); break; case 6: break; } if (current_matrix[row] != data) { current_matrix[row] = data; changed = true; } } } for (uint8_t row = 0; row < ROWS_PER_HAND; row++) { current_matrix[11 - row] = 0; for (uint8_t col = 0; col < MATRIX_COLS; col++) { current_matrix[11 - row] |= ((raw_matrix_right[6 - col] & (1 << row) ? 1 : 0) << col); } } return changed; } // DO NOT REMOVE // Needed for proper wake/sleep void matrix_power_up(void) { bool temp_launching = is_launching; matrix_init_custom(); is_launching = temp_launching; if (!is_launching) { ML_LED_1(false); ML_LED_2(false); ML_LED_3(false); ML_LED_4(false); ML_LED_5(false); ML_LED_6(false); } // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; } } bool is_transport_connected(void) { return mcp23018_initd; }