//////////////////////////////////////////////////////////////////////////// // // This file is part of RTIMULib-Arduino // // Copyright (c) 2014-2015, richards-tech // // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the // Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #include "RTIMUMPU9250.h" #include "RTIMUSettings.h" #if defined(MPU9250_68) || defined(MPU9250_69) RTIMUMPU9250::RTIMUMPU9250(RTIMUSettings *settings) : RTIMU(settings) { } RTIMUMPU9250::~RTIMUMPU9250() { } bool RTIMUMPU9250::setSampleRate(int rate) { if ((rate < MPU9250_SAMPLERATE_MIN) || (rate > MPU9250_SAMPLERATE_MAX)) { return false; } m_sampleRate = rate; m_sampleInterval = (unsigned long)1000 / m_sampleRate; if (m_sampleInterval == 0) m_sampleInterval = 1; return true; } bool RTIMUMPU9250::setGyroLpf(unsigned char lpf) { switch (lpf) { case MPU9250_GYRO_LPF_8800: case MPU9250_GYRO_LPF_3600: case MPU9250_GYRO_LPF_250: case MPU9250_GYRO_LPF_184: case MPU9250_GYRO_LPF_92: case MPU9250_GYRO_LPF_41: case MPU9250_GYRO_LPF_20: case MPU9250_GYRO_LPF_10: case MPU9250_GYRO_LPF_5: m_gyroLpf = lpf; return true; default: return false; } } bool RTIMUMPU9250::setAccelLpf(unsigned char lpf) { switch (lpf) { case MPU9250_ACCEL_LPF_1130: case MPU9250_ACCEL_LPF_460: case MPU9250_ACCEL_LPF_184: case MPU9250_ACCEL_LPF_92: case MPU9250_ACCEL_LPF_41: case MPU9250_ACCEL_LPF_20: case MPU9250_ACCEL_LPF_10: case MPU9250_ACCEL_LPF_5: m_accelLpf = lpf; return true; default: return false; } } bool RTIMUMPU9250::setCompassRate(int rate) { if ((rate < MPU9250_COMPASSRATE_MIN) || (rate > MPU9250_COMPASSRATE_MAX)) { return false; } m_compassRate = rate; return true; } bool RTIMUMPU9250::setGyroFsr(unsigned char fsr) { switch (fsr) { case MPU9250_GYROFSR_250: m_gyroFsr = fsr; m_gyroScale = RTMATH_PI / (131.0 * 180.0); return true; case MPU9250_GYROFSR_500: m_gyroFsr = fsr; m_gyroScale = RTMATH_PI / (62.5 * 180.0); return true; case MPU9250_GYROFSR_1000: m_gyroFsr = fsr; m_gyroScale = RTMATH_PI / (32.8 * 180.0); return true; case MPU9250_GYROFSR_2000: m_gyroFsr = fsr; m_gyroScale = RTMATH_PI / (16.4 * 180.0); return true; default: return false; } } bool RTIMUMPU9250::setAccelFsr(unsigned char fsr) { switch (fsr) { case MPU9250_ACCELFSR_2: m_accelFsr = fsr; m_accelScale = 1.0/16384.0; return true; case MPU9250_ACCELFSR_4: m_accelFsr = fsr; m_accelScale = 1.0/8192.0; return true; case MPU9250_ACCELFSR_8: m_accelFsr = fsr; m_accelScale = 1.0/4096.0; return true; case MPU9250_ACCELFSR_16: m_accelFsr = fsr; m_accelScale = 1.0/2048.0; return true; default: return false; } } int RTIMUMPU9250::IMUInit() { unsigned char result; unsigned char asa[3]; m_firstTime = true; #ifdef MPU9250_CACHE_MODE m_cacheIn = m_cacheOut = m_cacheCount = 0; #endif // configure IMU m_slaveAddr = m_settings->m_I2CSlaveAddress; setSampleRate(m_settings->m_MPU9250GyroAccelSampleRate); setCompassRate(m_settings->m_MPU9250CompassSampleRate); setGyroLpf(m_settings->m_MPU9250GyroLpf); setAccelLpf(m_settings->m_MPU9250AccelLpf); setGyroFsr(m_settings->m_MPU9250GyroFsr); setAccelFsr(m_settings->m_MPU9250AccelFsr); setCalibrationData(); // reset the MPU9250 if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_PWR_MGMT_1, 0x80)) return -1; delay(100); if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_PWR_MGMT_1, 0x00)) return -4; if (!I2Cdev::readByte(m_slaveAddr, MPU9250_WHO_AM_I, &result)) return -5; if (result != MPU9250_ID) { return -6; } // now configure the various components if (!setGyroConfig()) return -7; if (!setAccelConfig()) return -8; if (!setSampleRate()) return -9; // now configure compass if (!bypassOn()) return -11; // get fuse ROM data if (!I2Cdev::writeByte(AK8963_ADDRESS, AK8963_CNTL, 0)) { bypassOff(); return -12; } if (!I2Cdev::writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0f)) { bypassOff(); return -13; } if (!I2Cdev::readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, asa)) { bypassOff(); return -14; } // convert asa to usable scale factor m_compassAdjust[0] = ((float)asa[0] - 128.0) / 256.0 + 1.0f; m_compassAdjust[1] = ((float)asa[1] - 128.0) / 256.0 + 1.0f; m_compassAdjust[2] = ((float)asa[2] - 128.0) / 256.0 + 1.0f; if (!I2Cdev::writeByte(AK8963_ADDRESS, AK8963_CNTL, 0)) { bypassOff(); return -15; } if (!bypassOff()) return -16; // now set up MPU9250 to talk to the compass chip if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_I2C_MST_CTRL, 0x40)) return -17; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_I2C_SLV0_ADDR, 0x80 | AK8963_ADDRESS)) return -18; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_I2C_SLV0_REG, AK8963_ST1)) return -19; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_I2C_SLV0_CTRL, 0x88)) return -20; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_I2C_SLV1_ADDR, AK8963_ADDRESS)) return -21; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_I2C_SLV1_REG, AK8963_CNTL)) return -22; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_I2C_SLV1_CTRL, 0x81)) return -23; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_I2C_SLV1_DO, 0x1)) return -24; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_I2C_MST_DELAY_CTRL, 0x3)) return -25; if (!setCompassRate()) return -27; // enable the sensors if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_PWR_MGMT_1, 1)) return -28; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_PWR_MGMT_2, 0)) return -29; // select the data to go into the FIFO and enable if (!resetFifo()) return -30; gyroBiasInit(); return 1; } bool RTIMUMPU9250::resetFifo() { if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_INT_ENABLE, 0)) return false; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_FIFO_EN, 0)) return false; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_USER_CTRL, 0)) return false; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_USER_CTRL, 0x04)) return false; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_USER_CTRL, 0x60)) return false; delay(50); if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_INT_ENABLE, 1)) return false; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_FIFO_EN, 0x78)) return false; return true; } bool RTIMUMPU9250::bypassOn() { unsigned char userControl; if (!I2Cdev::readByte(m_slaveAddr, MPU9250_USER_CTRL, &userControl)) return false; userControl &= ~0x20; userControl |= 2; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_USER_CTRL, userControl)) return false; delay(50); if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_INT_PIN_CFG, 0x82)) return false; delay(50); return true; } bool RTIMUMPU9250::bypassOff() { unsigned char userControl; if (!I2Cdev::readByte(m_slaveAddr, MPU9250_USER_CTRL, &userControl)) return false; userControl |= 0x20; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_USER_CTRL, userControl)) return false; delay(50); if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_INT_PIN_CFG, 0x80)) return false; delay(50); return true; } bool RTIMUMPU9250::setGyroConfig() { unsigned char gyroConfig = m_gyroFsr + ((m_gyroLpf >> 3) & 3); unsigned char gyroLpf = m_gyroLpf & 7; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_GYRO_CONFIG, gyroConfig)) return false; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_GYRO_LPF, gyroLpf)) return false; return true; } bool RTIMUMPU9250::setAccelConfig() { if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_ACCEL_CONFIG, m_accelFsr)) return false; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_ACCEL_LPF, m_accelLpf)) return false; return true; } bool RTIMUMPU9250::setSampleRate() { if (m_sampleRate > 1000) return true; // SMPRT not used above 1000Hz if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_SMPRT_DIV, (unsigned char) (1000 / m_sampleRate - 1))) return false; return true; } bool RTIMUMPU9250::setCompassRate() { int rate; rate = m_sampleRate / m_compassRate - 1; if (rate > 31) rate = 31; if (!I2Cdev::writeByte(m_slaveAddr, MPU9250_I2C_SLV4_CTRL, rate)) return false; return true; } int RTIMUMPU9250::IMUGetPollInterval() { return (400 / m_sampleRate); } bool RTIMUMPU9250::IMURead() { unsigned char fifoCount[2]; unsigned int count; unsigned char fifoData[12]; unsigned char compassData[8]; if (!I2Cdev::readBytes(m_slaveAddr, MPU9250_FIFO_COUNT_H, 2, fifoCount)) return false; count = ((unsigned int)fifoCount[0] << 8) + fifoCount[1]; if (count == 1024) { resetFifo(); m_timestamp += m_sampleInterval * (1024 / MPU9250_FIFO_CHUNK_SIZE + 1); // try to fix timestamp return false; } if (count > MPU9250_FIFO_CHUNK_SIZE * 40) { // more than 40 samples behind - going too slowly so discard some samples but maintain timestamp correctly while (count >= MPU9250_FIFO_CHUNK_SIZE * 10) { if (!I2Cdev::readBytes(m_slaveAddr, MPU9250_FIFO_R_W, MPU9250_FIFO_CHUNK_SIZE, fifoData)) return false; count -= MPU9250_FIFO_CHUNK_SIZE; m_timestamp += m_sampleInterval; } } if (count < MPU9250_FIFO_CHUNK_SIZE) return false; if (!I2Cdev::readBytes(m_slaveAddr, MPU9250_FIFO_R_W, MPU9250_FIFO_CHUNK_SIZE, fifoData)) return false; if (!I2Cdev::readBytes(m_slaveAddr, MPU9250_EXT_SENS_DATA_00, 8, compassData)) return false; RTMath::convertToVector(fifoData, m_accel, m_accelScale, true); RTMath::convertToVector(fifoData + 6, m_gyro, m_gyroScale, true); RTMath::convertToVector(compassData + 1, m_compass, 0.6f, false); // sort out gyro axes m_gyro.setY(-m_gyro.y()); m_gyro.setZ(-m_gyro.z()); // sort out accel data; m_accel.setX(-m_accel.x()); // use the fuse data adjustments for compass m_compass.setX(m_compass.x() * m_compassAdjust[0]); m_compass.setY(m_compass.y() * m_compassAdjust[1]); m_compass.setZ(m_compass.z() * m_compassAdjust[2]); // sort out compass axes float temp; temp = m_compass.x(); m_compass.setX(m_compass.y()); m_compass.setY(-temp); // now do standard processing handleGyroBias(); calibrateAverageCompass(); if (m_firstTime) m_timestamp = millis(); else m_timestamp += m_sampleInterval; m_firstTime = false; return true; } #endif