// ESP32 Dev Module #include "Wire.h" #include "MPU6050_6Axis_MotionApps20.h" #include #include /* Make an OSC message and send it over serial */ #ifdef BOARD_HAS_USB_SERIAL #include SLIPEncodedUSBSerial SLIPSerial( thisBoardsSerialUSB ); #else #include SLIPEncodedSerial SLIPSerial(Serial); // Change to Serial1 or Serial2 etc. for boards with multiple serial ports that don’t have Serial #endif MPU6050 mpu; // uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual // quaternion components in a [w, x, y, z] format (not best for parsing // on a remote host such as Processing or something though) #define OUTPUT_READABLE_QUATERNION // uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles // (in degrees) calculated from the quaternions coming from the FIFO. // Note that Euler angles suffer from gimbal lock (for more info, see // http://en.wikipedia.org/wiki/Gimbal_lock) //#define OUTPUT_READABLE_EULER // uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/ // pitch/roll angles (in degrees) calculated from the quaternions coming // from the FIFO. Note this also requires gravity vector calculations. // Also note that yaw/pitch/roll angles suffer from gimbal lock (for // more info, see: http://en.wikipedia.org/wiki/Gimbal_lock) #define OUTPUT_READABLE_YAWPITCHROLL // uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration // components with gravity removed. This acceleration reference frame is // not compensated for orientation, so +X is always +X according to the // sensor, just without the effects of gravity. If you want acceleration // compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead. //#define OUTPUT_READABLE_REALACCEL // uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration // components with gravity removed and adjusted for the world frame of // reference (yaw is relative to initial orientation, since no magnetometer // is present in this case). Could be quite handy in some cases. #define OUTPUT_READABLE_WORLDACCEL // MPU control/status vars bool dmpReady = false; // set true if DMP init was successful uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU uint8_t devStatus; // return status after each device operation (0 = success, !0 = error) uint16_t packetSize; // expected DMP packet size (default is 42 bytes) uint16_t fifoCount; // count of all bytes currently in FIFO uint8_t fifoBuffer[64]; // FIFO storage buffer // orientation/motion vars Quaternion q; // [w, x, y, z] quaternion container VectorInt16 aa; // [x, y, z] accel sensor measurements VectorInt16 gy; // [x, y, z] gyro sensor measurements VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements VectorFloat gravity; // [x, y, z] gravity vector float euler[3]; // [psi, theta, phi] Euler angle container float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector // Sem dobimo vrednosti int16_t AcX,AcY,AcZ; float GyX, GyY, GyZ; // Keys byte keys[] = {16, 17, 5, 18}; byte pressed[] = {0, 0, 0, 0}; byte KEYLEN = 4; OSCMessage msg("/accel/"); OSCMessage gmsg("/gyro/"); OSCMessage emsg("/error/"); OSCMessage kmsg("/keys/"); OSCMessage qmsg("/quaternion/"); void setup() { Wire.begin(); Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties SLIPSerial.begin(115200); // set this as high as you can reliably run on your platform // Keys for(int i = 0; i < KEYLEN; i++) { pinMode(keys[i], INPUT_PULLUP); } mpu.initialize(); mpu.setFullScaleGyroRange(MPU6050_GYRO_FS_250); mpu.setFullScaleAccelRange(MPU6050_ACCEL_FS_2); // DMP init devStatus = mpu.dmpInitialize(); // supply your own gyro offsets here, scaled for min sensitivity // !!! Run Zero IMU to get readings /* First proto (right hand, black&blue) mpu.setXGyroOffset(76); mpu.setYGyroOffset(68); mpu.setZGyroOffset(10); mpu.setXAccelOffset(-3527); mpu.setYAccelOffset(-913); mpu.setZAccelOffset(1027); */ /* Second proto, translucent / white */ mpu.setXGyroOffset(-3650); mpu.setYGyroOffset(-2531); mpu.setZGyroOffset(1131); mpu.setXAccelOffset(162); mpu.setYAccelOffset(-16); mpu.setZAccelOffset(-12); // make sure it worked (returns 0 if so) if (devStatus == 0) { // Calibration Time: generate offsets and calibrate our MPU6050 mpu.CalibrateAccel(6); mpu.CalibrateGyro(6); //Serial.println(); //mpu.PrintActiveOffsets(); // turn on the DMP, now that it's ready //Serial.println(F("Enabling DMP...")); mpu.setDMPEnabled(true); // set our DMP Ready flag so the main loop() function knows it's okay to use it //Serial.println(F("DMP ready! Waiting for first interrupt...")); dmpReady = true; // get expected DMP packet size for later comparison packetSize = mpu.dmpGetFIFOPacketSize(); } else { emsg.add("DMP Initialization failed (code " + String(devStatus) + ")"); SLIPSerial.beginPacket(); emsg.send(SLIPSerial); SLIPSerial.endPacket(); emsg.empty(); // ERROR! // 1 = initial memory load failed // 2 = DMP configuration updates failed // (if it's going to break, usually the code will be 1) } } void loop() { // if programming failed, don't try to do anything if (!dmpReady) return; // read a packet from FIFO if (mpu.dmpGetCurrentFIFOPacket(fifoBuffer)) { // Get the Latest packet #ifdef OUTPUT_READABLE_QUATERNION // display quaternion values in easy matrix form: w x y z mpu.dmpGetQuaternion(&q, fifoBuffer); qmsg.add(q.w); qmsg.add(q.x); qmsg.add(q.y); qmsg.add(q.z); SLIPSerial.beginPacket(); qmsg.send(SLIPSerial); SLIPSerial.endPacket(); qmsg.empty(); #endif #ifdef OUTPUT_READABLE_EULER // display Euler angles in degrees mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetEuler(euler, &q); GyX = euler[0]; GyY = euler[1]; GyZ = euler[2]; #endif #ifdef OUTPUT_READABLE_YAWPITCHROLL // display Euler angles in degrees mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); GyX = ypr[0]; GyY = ypr[1]; GyZ = ypr[2]; #endif #ifdef OUTPUT_READABLE_REALACCEL // display real acceleration, adjusted to remove gravity mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetAccel(&aa, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity); AcX = aaReal.x; AcY = aaReal.y; AcZ = aaReal.z; #endif #ifdef OUTPUT_READABLE_WORLDACCEL // display initial world-frame acceleration, adjusted to remove gravity // and rotated based on known orientation from quaternion mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetAccel(&aa, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity); mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q); AcX = aaWorld.x; AcY = aaWorld.y; AcZ = aaWorld.z; #endif // Send over serial msg.add(AcX); msg.add(AcY); msg.add(AcZ); SLIPSerial.beginPacket(); msg.send(SLIPSerial); SLIPSerial.endPacket(); msg.empty(); gmsg.add(GyX); gmsg.add(GyY); gmsg.add(GyZ); SLIPSerial.beginPacket(); gmsg.send(SLIPSerial); SLIPSerial.endPacket(); gmsg.empty(); // Send keys for(int i = 0; i < KEYLEN; i++) { pressed[i] = !digitalRead(keys[i]); kmsg.add(pressed[i]); } SLIPSerial.beginPacket(); kmsg.send(SLIPSerial); SLIPSerial.endPacket(); kmsg.empty(); } }