gravitacija-perspektive/lib/OSC/OSCBoards.cpp

192 lines
5.0 KiB
C++
Raw Normal View History

/*
Written by Adrian Freed, The Center for New Music and Audio Technologies,
University of California, Berkeley. Copyright (c) 2013, The Regents of
the University of California (Regents).
Permission to use, copy, modify, distribute, and distribute modified versions
of this software and its documentation without fee and without a signed
licensing agreement, is hereby granted, provided that the above copyright
notice, this paragraph and the following two paragraphs appear in all copies,
modifications, and distributions.
IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING
OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
For bug reports and feature requests please email me at yotam@cnmat.berkeley.edu
*/
#include <Arduino.h>
#include "OSCBoards.h"
#ifndef analogInputToDigitalPin
int analogInputToDigitalPin(int i)
{
switch(i)
{
#ifdef A0
case 0: return A0;
#endif
#ifdef A1
case 1: return A1;
#endif
#ifdef A2
case 2: return A2;
#endif
#ifdef A3
case 3: return A3;
#endif
#ifdef A4
case 4: return A4;
#endif
#ifdef A5
case 5: return A5;
#endif
#ifdef A6
case 6: return A6;
#endif
#ifdef A7
case 7: return A7;
#endif
#ifdef A8
case 8: return A8;
#endif
#ifdef A9
case 9: return A9;
#endif
#ifdef A10
case 10: return A10;
#endif
#ifdef A11
case 11: return A11;
#endif
#ifdef A12
case 12: return A12;
#endif
#ifdef A13
case 13: return A13;
#endif
#ifdef A14
case 14: return A14;
#endif
#ifdef A15
case 15: return A15;
#endif
#ifdef A16
case 16: return A16;
#endif
}
return -1;
}
#endif
#ifdef BOARD_HAS_DIE_POWER_SUPPLY_MEASUREMENT
#if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MKL26Z64__) || defined(__MK64FX512V__) || defined(__MK66FX1M0__)
float getSupplyVoltage()
{
analogReference(DEFAULT);
analogReadResolution(12);
analogReadAveraging(32);
PMC_REGSC |= PMC_REGSC_BGBE; // 39=bandgap ref (PMC_REGSC |= PMC_REGSC_BGBE);
delay(1);
#if defined(__MKL26Z64__)
// Teensy 3 LC
int val = analogRead(39);
return val>0? (1.0f*4095/val):0.0f;
#elif defined(__MK64FX512V__) || defined(__MK66FX1M0__)
int val = analogRead(71);
return val>0? (1.195f*4095/val):0.0f;
#else
int val = analogRead(39);
return val>0? (1.195f*4095/val):0.0f;
#endif
}
#else
// power supply measurement on some Arduinos
float getSupplyVoltage(){
// powersupply
int result;
// Read 1.1V reference against AVcc
#if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ADMUX = _BV(MUX5) | _BV(MUX0);
#elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
ADMUX = _BV(MUX3) | _BV(MUX2);
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__) || defined(__AVR_ATmega1280__)
ADMUX = 0x40| _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1) ;
ADCSRB = 0;
#else
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#endif
delayMicroseconds(300); // wait for Vref to settle
ADCSRA |= _BV(ADSC); // Convert
while (bit_is_set(ADCSRA,ADSC));
result = ADCL;
result |= ADCH<<8;
float supplyvoltage = 1.1264f *1023 / result;
return supplyvoltage;
}
#endif
#endif
#ifdef BOARD_HAS_DIE_TEMPERATURE_SENSOR
#if defined(__MK20DX128__) || defined(__MK20DX256__)|| defined(__MKL26Z64__) || defined(__MK66FX1M0__) || defined(__MK64FX512V__)
float getTemperature()
{
#if defined(__MK64FX512V__) || defined(__MK66FX1M0__)
const int temppin = 70 ;
#else
const int temppin = 38;
#endif
// untested on all teensy 3.x
analogReference(INTERNAL);
analogReadResolution(12);
analogReadAveraging(32);
delay(2);
float val = 25.0 + 0.17083 * (2454.19 - analogRead(temppin));
analogReference(DEFAULT);
return val;
}
#else
// temperature
float getTemperature(){
int result;
#if defined(__AVR_ATmega32U4__)
ADMUX = _BV(REFS1) | _BV(REFS0) | _BV(MUX2) | _BV(MUX1) | _BV(MUX0);
ADCSRB = _BV(MUX5);
#else
ADMUX = _BV(REFS1) | _BV(REFS0) | _BV(MUX3);
#endif
delayMicroseconds(200); // wait for Vref to settle
ADCSRA |= _BV(ADSC); // Convert
while (bit_is_set(ADCSRA,ADSC));
result = ADCL;
result |= ADCH<<8;
analogReference(DEFAULT);
return result/1023.0f;
}
#endif
#endif