// Inertial Measurement Unit Maths Library // // Copyright 2013-2021 Sam Cowen // Bug fixes and cleanups by Gé Vissers (gvissers@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #ifndef IMUMATH_QUATERNION_HPP #define IMUMATH_QUATERNION_HPP #include #include #include #include #include "matrix.h" namespace imu { class Quaternion { public: Quaternion() : _w(1.0), _x(0.0), _y(0.0), _z(0.0) {} Quaternion(double w, double x, double y, double z) : _w(w), _x(x), _y(y), _z(z) {} Quaternion(double w, Vector<3> vec) : _w(w), _x(vec.x()), _y(vec.y()), _z(vec.z()) {} double &w() { return _w; } double &x() { return _x; } double &y() { return _y; } double &z() { return _z; } double w() const { return _w; } double x() const { return _x; } double y() const { return _y; } double z() const { return _z; } double magnitude() const { return sqrt(_w * _w + _x * _x + _y * _y + _z * _z); } void normalize() { double mag = magnitude(); *this = this->scale(1 / mag); } Quaternion conjugate() const { return Quaternion(_w, -_x, -_y, -_z); } void fromAxisAngle(const Vector<3> &axis, double theta) { _w = cos(theta / 2); // only need to calculate sine of half theta once double sht = sin(theta / 2); _x = axis.x() * sht; _y = axis.y() * sht; _z = axis.z() * sht; } void fromMatrix(const Matrix<3> &m) { double tr = m.trace(); double S; if (tr > 0) { S = sqrt(tr + 1.0) * 2; _w = 0.25 * S; _x = (m(2, 1) - m(1, 2)) / S; _y = (m(0, 2) - m(2, 0)) / S; _z = (m(1, 0) - m(0, 1)) / S; } else if (m(0, 0) > m(1, 1) && m(0, 0) > m(2, 2)) { S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2; _w = (m(2, 1) - m(1, 2)) / S; _x = 0.25 * S; _y = (m(0, 1) + m(1, 0)) / S; _z = (m(0, 2) + m(2, 0)) / S; } else if (m(1, 1) > m(2, 2)) { S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2; _w = (m(0, 2) - m(2, 0)) / S; _x = (m(0, 1) + m(1, 0)) / S; _y = 0.25 * S; _z = (m(1, 2) + m(2, 1)) / S; } else { S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2; _w = (m(1, 0) - m(0, 1)) / S; _x = (m(0, 2) + m(2, 0)) / S; _y = (m(1, 2) + m(2, 1)) / S; _z = 0.25 * S; } } void toAxisAngle(Vector<3> &axis, double &angle) const { double sqw = sqrt(1 - _w * _w); if (sqw == 0) // it's a singularity and divide by zero, avoid return; angle = 2 * acos(_w); axis.x() = _x / sqw; axis.y() = _y / sqw; axis.z() = _z / sqw; } Matrix<3> toMatrix() const { Matrix<3> ret; ret.cell(0, 0) = 1 - 2 * _y * _y - 2 * _z * _z; ret.cell(0, 1) = 2 * _x * _y - 2 * _w * _z; ret.cell(0, 2) = 2 * _x * _z + 2 * _w * _y; ret.cell(1, 0) = 2 * _x * _y + 2 * _w * _z; ret.cell(1, 1) = 1 - 2 * _x * _x - 2 * _z * _z; ret.cell(1, 2) = 2 * _y * _z - 2 * _w * _x; ret.cell(2, 0) = 2 * _x * _z - 2 * _w * _y; ret.cell(2, 1) = 2 * _y * _z + 2 * _w * _x; ret.cell(2, 2) = 1 - 2 * _x * _x - 2 * _y * _y; return ret; } // Returns euler angles that represent the quaternion. Angles are // returned in rotation order and right-handed about the specified // axes: // // v[0] is applied 1st about z (ie, roll) // v[1] is applied 2nd about y (ie, pitch) // v[2] is applied 3rd about x (ie, yaw) // // Note that this means result.x() is not a rotation about x; // similarly for result.z(). // Vector<3> toEuler() const { Vector<3> ret; double sqw = _w * _w; double sqx = _x * _x; double sqy = _y * _y; double sqz = _z * _z; ret.x() = atan2(2.0 * (_x * _y + _z * _w), (sqx - sqy - sqz + sqw)); ret.y() = asin(-2.0 * (_x * _z - _y * _w) / (sqx + sqy + sqz + sqw)); ret.z() = atan2(2.0 * (_y * _z + _x * _w), (-sqx - sqy + sqz + sqw)); return ret; } Vector<3> toAngularVelocity(double dt) const { Vector<3> ret; Quaternion one(1.0, 0.0, 0.0, 0.0); Quaternion delta = one - *this; Quaternion r = (delta / dt); r = r * 2; r = r * one; ret.x() = r.x(); ret.y() = r.y(); ret.z() = r.z(); return ret; } Vector<3> rotateVector(const Vector<2> &v) const { return rotateVector(Vector<3>(v.x(), v.y())); } Vector<3> rotateVector(const Vector<3> &v) const { Vector<3> qv(_x, _y, _z); Vector<3> t = qv.cross(v) * 2.0; return v + t * _w + qv.cross(t); } Quaternion operator*(const Quaternion &q) const { return Quaternion(_w * q._w - _x * q._x - _y * q._y - _z * q._z, _w * q._x + _x * q._w + _y * q._z - _z * q._y, _w * q._y - _x * q._z + _y * q._w + _z * q._x, _w * q._z + _x * q._y - _y * q._x + _z * q._w); } Quaternion operator+(const Quaternion &q) const { return Quaternion(_w + q._w, _x + q._x, _y + q._y, _z + q._z); } Quaternion operator-(const Quaternion &q) const { return Quaternion(_w - q._w, _x - q._x, _y - q._y, _z - q._z); } Quaternion operator/(double scalar) const { return Quaternion(_w / scalar, _x / scalar, _y / scalar, _z / scalar); } Quaternion operator*(double scalar) const { return scale(scalar); } Quaternion scale(double scalar) const { return Quaternion(_w * scalar, _x * scalar, _y * scalar, _z * scalar); } private: double _w, _x, _y, _z; }; } // namespace imu #endif