#!/usr/bin/python3 import numpy as np import matplotlib.pyplot as plt from matplotlib import rc rc('font',**{'family':'serif','serif':['Computer Modern']}) rc('text', usetex=True) e = 1.602176565e-19 #osnovni naboj [C] m_pr = 1.672621777e-27 #masa protona [kg] m_el = 9.10938291e-31 #masa elektrona [kg] c = 299792458 #hitrost svetlobe [m/s] def boris(x0, v0, E, B, dt, tdur, q=1, m=1): ''' Borisov algoritem zabjega skoka za integracijo diferencialne enačbe x0 = [x,y,z] : vektor zacetne pozicije v0 = [vx,vy,vz] : vektor zacetne hitrosti E : funkcija, ki daje jakost polja E(x) B : funkcija, ki daje jakost polja B(x) dt: casovni korak ''' duration = int(tdur/dt) X = np.zeros((duration,3)) V = np.zeros((duration,3)) x = x0 v = v0 q_prime = dt * q * 0.5 / m # https://en.wikipedia.org/wiki/Particle-in-cell for time in range(duration): h = q_prime*B(x) s = 2*h / (1+np.dot(h,h)) u = v + q_prime*E(x) u_ = u + np.cross(u+np.cross(u,h),s) v = u_ + q_prime * E(x) x = x + dt*v V[time,:] = v X[time,:] = x return X, V def B_zemlja(x): ''' model zemljinega magnentnega polja aproksimiran z magnetnim dipolom ''' B0 = 3.07e-5 # [T] Rz = 6378137 # radii zemlje [m] r = np.sqrt(np.sum(x**2)) k = -B0*Rz**3/r**5 return k*np.array([3*x[0]*x[2],3*x[1]*x[2],2*x[2]**2-x[0]**2-x[1]**2]) def Wk(m,V): return 0.5*m*np.sum(V**2,1) def plot3(X,enote='m',zemlja=False): fig = plt.figure() ax = fig.add_subplot(projection='3d') if zemlja: u = np.linspace(0, 2 * np.pi, 100) v = np.linspace(0, np.pi, 100) x = np.outer(np.cos(u), np.sin(v)) y = np.outer(np.sin(u), np.sin(v)) z = np.outer(np.ones(np.size(u)), np.cos(v)) ax.plot_surface(x,y,z,zorder=-4) #ax.set_box_aspect(np.ptp(X,axis=0)) ax.plot(X[:,0],X[:,1],X[:,2],zorder=4) ax.set_xlabel(r'$x$ [{}]'.format(enote)) ax.set_ylabel(r'$y$ [{}]'.format(enote)) ax.set_zlabel(r'$z$ [{}]'.format(enote)) plt.show() def rplot(X, enote='m', xy=[0,1],os='xy', fname=None): fig = plt.figure() ax = fig.subplots() ax.plot(X[:,xy[0]],X[:,xy[1]], 'k') ax.grid() dx = X[-1,xy[0]]-X[-2,xy[0]] dy = X[-1,xy[1]]-X[-2,xy[1]] #ax.arrow(X[-1,xy[0]],X[-1,xy[1]],dx,dy,head_width=0.1,head_length=0.2, # overhang=0.3, zorder=10,color='k') ax.set_xlabel(r'${}$ [{}]'.format(os[0],enote)) ax.set_ylabel(r'${}$ [{}]'.format(os[1],enote)) if fname: plt.savefig(fname,bbox_inches='tight') plt.show() if __name__ == "__main__": # testni del kode E = lambda x: np.array([0.0,0.2,0.3]) B = lambda x: np.array([0.,0.0,1.*x[0]]) x0 = np.array([-1.,0.,0.]) v0 = np.array([0.,1.,0.]) dt = 1e-2 X, V = boris(x0,v0,E,B,dt,20) #ax.quiver(X[0:-1:20,0],X[0:-1:20,1],X[0:-1:20,2],V[0:-1:20,0],V[0:-1:20,1],V[0:-1:20,2], color='black',normalize=True,length=.5) # quiver res naredi grdo sliko plot3(X)