qmk-dactyl-manuform-a/quantum/rgb_matrix.c

890 lines
28 KiB
C

/* Copyright 2017 Jason Williams
* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "rgb_matrix.h"
#include <avr/io.h>
#include "i2c_master.h"
#include <util/delay.h>
#include <avr/interrupt.h>
#include "progmem.h"
#include "config.h"
#include "eeprom.h"
#include "lufa.h"
#include <math.h>
rgb_config_t rgb_matrix_config;
#ifndef RGB_DISABLE_AFTER_TIMEOUT
#define RGB_DISABLE_AFTER_TIMEOUT 0
#endif
#ifndef RGB_DISABLE_WHEN_USB_SUSPENDED
#define RGB_DISABLE_WHEN_USB_SUSPENDED false
#endif
#ifndef EECONFIG_RGB_MATRIX
#define EECONFIG_RGB_MATRIX EECONFIG_RGBLIGHT
#endif
bool g_suspend_state = false;
// Global tick at 20 Hz
uint32_t g_tick = 0;
// Ticks since this key was last hit.
uint8_t g_key_hit[DRIVER_LED_TOTAL];
// Ticks since any key was last hit.
uint32_t g_any_key_hit = 0;
#ifndef PI
#define PI 3.14159265
#endif
uint32_t eeconfig_read_rgb_matrix(void) {
return eeprom_read_dword(EECONFIG_RGB_MATRIX);
}
void eeconfig_update_rgb_matrix(uint32_t val) {
eeprom_update_dword(EECONFIG_RGB_MATRIX, val);
}
void eeconfig_update_rgb_matrix_default(void) {
dprintf("eeconfig_update_rgb_matrix_default\n");
rgb_matrix_config.enable = 1;
rgb_matrix_config.mode = RGB_MATRIX_CYCLE_LEFT_RIGHT;
rgb_matrix_config.hue = 0;
rgb_matrix_config.sat = 255;
rgb_matrix_config.val = 255;
rgb_matrix_config.speed = 0;
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void eeconfig_debug_rgb_matrix(void) {
dprintf("rgb_matrix_config eprom\n");
dprintf("rgb_matrix_config.enable = %d\n", rgb_matrix_config.enable);
dprintf("rgb_matrix_config.mode = %d\n", rgb_matrix_config.mode);
dprintf("rgb_matrix_config.hue = %d\n", rgb_matrix_config.hue);
dprintf("rgb_matrix_config.sat = %d\n", rgb_matrix_config.sat);
dprintf("rgb_matrix_config.val = %d\n", rgb_matrix_config.val);
dprintf("rgb_matrix_config.speed = %d\n", rgb_matrix_config.speed);
}
// Last led hit
#define LED_HITS_TO_REMEMBER 8
uint8_t g_last_led_hit[LED_HITS_TO_REMEMBER] = {255};
uint8_t g_last_led_count = 0;
void map_row_column_to_led( uint8_t row, uint8_t column, uint8_t *led_i, uint8_t *led_count) {
rgb_led led;
*led_count = 0;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
// map_index_to_led(i, &led);
led = g_rgb_leds[i];
if (row == led.matrix_co.row && column == led.matrix_co.col) {
led_i[*led_count] = i;
(*led_count)++;
}
}
}
void rgb_matrix_update_pwm_buffers(void) {
IS31FL3731_update_pwm_buffers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
}
void rgb_matrix_set_color( int index, uint8_t red, uint8_t green, uint8_t blue ) {
IS31FL3731_set_color( index, red, green, blue );
}
void rgb_matrix_set_color_all( uint8_t red, uint8_t green, uint8_t blue ) {
IS31FL3731_set_color_all( red, green, blue );
}
bool process_rgb_matrix(uint16_t keycode, keyrecord_t *record) {
if ( record->event.pressed ) {
uint8_t led[8], led_count;
map_row_column_to_led(record->event.key.row, record->event.key.col, led, &led_count);
if (led_count > 0) {
for (uint8_t i = LED_HITS_TO_REMEMBER; i > 1; i--) {
g_last_led_hit[i - 1] = g_last_led_hit[i - 2];
}
g_last_led_hit[0] = led[0];
g_last_led_count = MIN(LED_HITS_TO_REMEMBER, g_last_led_count + 1);
}
for(uint8_t i = 0; i < led_count; i++)
g_key_hit[led[i]] = 0;
g_any_key_hit = 0;
} else {
#ifdef RGB_MATRIX_KEYRELEASES
uint8_t led[8], led_count;
map_row_column_to_led(record->event.key.row, record->event.key.col, led, &led_count);
for(uint8_t i = 0; i < led_count; i++)
g_key_hit[led[i]] = 255;
g_any_key_hit = 255;
#endif
}
return true;
}
void rgb_matrix_set_suspend_state(bool state) {
g_suspend_state = state;
}
void rgb_matrix_test(void) {
// Mask out bits 4 and 5
// Increase the factor to make the test animation slower (and reduce to make it faster)
uint8_t factor = 10;
switch ( (g_tick & (0b11 << factor)) >> factor )
{
case 0:
{
rgb_matrix_set_color_all( 20, 0, 0 );
break;
}
case 1:
{
rgb_matrix_set_color_all( 0, 20, 0 );
break;
}
case 2:
{
rgb_matrix_set_color_all( 0, 0, 20 );
break;
}
case 3:
{
rgb_matrix_set_color_all( 20, 20, 20 );
break;
}
}
}
// This tests the LEDs
// Note that it will change the LED control registers
// in the LED drivers, and leave them in an invalid
// state for other backlight effects.
// ONLY USE THIS FOR TESTING LEDS!
void rgb_matrix_single_LED_test(void) {
static uint8_t color = 0; // 0,1,2 for R,G,B
static uint8_t row = 0;
static uint8_t column = 0;
static uint8_t tick = 0;
tick++;
if ( tick > 2 )
{
tick = 0;
column++;
}
if ( column > MATRIX_COLS )
{
column = 0;
row++;
}
if ( row > MATRIX_ROWS )
{
row = 0;
color++;
}
if ( color > 2 )
{
color = 0;
}
uint8_t led[8], led_count;
map_row_column_to_led(row,column,led,&led_count);
for(uint8_t i = 0; i < led_count; i++) {
rgb_matrix_set_color_all( 40, 40, 40 );
rgb_matrix_test_led( led[i], color==0, color==1, color==2 );
}
}
// All LEDs off
void rgb_matrix_all_off(void) {
rgb_matrix_set_color_all( 0, 0, 0 );
}
// Solid color
void rgb_matrix_solid_color(void) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color_all( rgb.r, rgb.g, rgb.b );
}
void rgb_matrix_solid_reactive(void) {
// Relies on hue being 8-bit and wrapping
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
uint16_t offset2 = g_key_hit[i]<<2;
offset2 = (offset2<=130) ? (130-offset2) : 0;
HSV hsv = { .h = rgb_matrix_config.hue+offset2, .s = 255, .v = rgb_matrix_config.val };
RGB rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
// alphas = color1, mods = color2
void rgb_matrix_alphas_mods(void) {
RGB rgb1 = hsv_to_rgb( (HSV){ .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val } );
RGB rgb2 = hsv_to_rgb( (HSV){ .h = (rgb_matrix_config.hue + 180) % 360, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val } );
rgb_led led;
for (int i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
if ( led.matrix_co.raw < 0xFF ) {
if ( led.modifier )
{
rgb_matrix_set_color( i, rgb2.r, rgb2.g, rgb2.b );
}
else
{
rgb_matrix_set_color( i, rgb1.r, rgb1.g, rgb1.b );
}
}
}
}
void rgb_matrix_gradient_up_down(void) {
int16_t h1 = rgb_matrix_config.hue;
int16_t h2 = (rgb_matrix_config.hue + 180) % 360;
int16_t deltaH = h2 - h1;
// Take the shortest path between hues
if ( deltaH > 127 )
{
deltaH -= 256;
}
else if ( deltaH < -127 )
{
deltaH += 256;
}
// Divide delta by 4, this gives the delta per row
deltaH /= 4;
int16_t s1 = rgb_matrix_config.sat;
int16_t s2 = rgb_matrix_config.hue;
int16_t deltaS = ( s2 - s1 ) / 4;
HSV hsv = { .h = 0, .s = 255, .v = rgb_matrix_config.val };
RGB rgb;
Point point;
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// map_led_to_point( i, &point );
point = g_rgb_leds[i].point;
// The y range will be 0..64, map this to 0..4
uint8_t y = (point.y>>4);
// Relies on hue being 8-bit and wrapping
hsv.h = rgb_matrix_config.hue + ( deltaH * y );
hsv.s = rgb_matrix_config.sat + ( deltaS * y );
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
void rgb_matrix_raindrops(bool initialize) {
int16_t h1 = rgb_matrix_config.hue;
int16_t h2 = (rgb_matrix_config.hue + 180) % 360;
int16_t deltaH = h2 - h1;
deltaH /= 4;
// Take the shortest path between hues
if ( deltaH > 127 )
{
deltaH -= 256;
}
else if ( deltaH < -127 )
{
deltaH += 256;
}
int16_t s1 = rgb_matrix_config.sat;
int16_t s2 = rgb_matrix_config.sat;
int16_t deltaS = ( s2 - s1 ) / 4;
HSV hsv;
RGB rgb;
// Change one LED every tick, make sure speed is not 0
uint8_t led_to_change = ( g_tick & ( 0x0A / (rgb_matrix_config.speed == 0 ? 1 : rgb_matrix_config.speed) ) ) == 0 ? rand() % (DRIVER_LED_TOTAL) : 255;
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// If initialize, all get set to random colors
// If not, all but one will stay the same as before.
if ( initialize || i == led_to_change )
{
hsv.h = h1 + ( deltaH * ( rand() & 0x03 ) );
hsv.s = s1 + ( deltaS * ( rand() & 0x03 ) );
// Override brightness with global brightness control
hsv.v = rgb_matrix_config.val;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
}
void rgb_matrix_cycle_all(void) {
uint8_t offset = ( g_tick << rgb_matrix_config.speed ) & 0xFF;
rgb_led led;
// Relies on hue being 8-bit and wrapping
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// map_index_to_led(i, &led);
led = g_rgb_leds[i];
if (led.matrix_co.raw < 0xFF) {
uint16_t offset2 = g_key_hit[i]<<2;
offset2 = (offset2<=63) ? (63-offset2) : 0;
HSV hsv = { .h = offset+offset2, .s = 255, .v = rgb_matrix_config.val };
RGB rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
}
void rgb_matrix_cycle_left_right(void) {
uint8_t offset = ( g_tick << rgb_matrix_config.speed ) & 0xFF;
HSV hsv = { .h = 0, .s = 255, .v = rgb_matrix_config.val };
RGB rgb;
Point point;
rgb_led led;
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// map_index_to_led(i, &led);
led = g_rgb_leds[i];
if (led.matrix_co.raw < 0xFF) {
uint16_t offset2 = g_key_hit[i]<<2;
offset2 = (offset2<=63) ? (63-offset2) : 0;
// map_led_to_point( i, &point );
point = g_rgb_leds[i].point;
// Relies on hue being 8-bit and wrapping
hsv.h = point.x + offset + offset2;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
}
void rgb_matrix_cycle_up_down(void) {
uint8_t offset = ( g_tick << rgb_matrix_config.speed ) & 0xFF;
HSV hsv = { .h = 0, .s = 255, .v = rgb_matrix_config.val };
RGB rgb;
Point point;
rgb_led led;
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// map_index_to_led(i, &led);
led = g_rgb_leds[i];
if (led.matrix_co.raw < 0xFF) {
uint16_t offset2 = g_key_hit[i]<<2;
offset2 = (offset2<=63) ? (63-offset2) : 0;
// map_led_to_point( i, &point );
point = g_rgb_leds[i].point;
// Relies on hue being 8-bit and wrapping
hsv.h = point.y + offset + offset2;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
}
void rgb_matrix_dual_beacon(void) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
hsv.h = ((led.point.y - 32.0)* cos(g_tick * PI / 128) / 32 + (led.point.x - 112.0) * sin(g_tick * PI / 128) / (112)) * (180) + rgb_matrix_config.hue;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
void rgb_matrix_rainbow_beacon(void) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
hsv.h = (1.5 * (rgb_matrix_config.speed == 0 ? 1 : rgb_matrix_config.speed)) * (led.point.y - 32.0)* cos(g_tick * PI / 128) + (1.5 * (rgb_matrix_config.speed == 0 ? 1 : rgb_matrix_config.speed)) * (led.point.x - 112.0) * sin(g_tick * PI / 128) + rgb_matrix_config.hue;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
void rgb_matrix_rainbow_pinwheels(void) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
hsv.h = (2 * (rgb_matrix_config.speed == 0 ? 1 : rgb_matrix_config.speed)) * (led.point.y - 32.0)* cos(g_tick * PI / 128) + (2 * (rgb_matrix_config.speed == 0 ? 1 : rgb_matrix_config.speed)) * (66 - abs(led.point.x - 112.0)) * sin(g_tick * PI / 128) + rgb_matrix_config.hue;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
void rgb_matrix_rainbow_moving_chevron(void) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
// uint8_t r = g_tick;
uint8_t r = 32;
hsv.h = (1.5 * (rgb_matrix_config.speed == 0 ? 1 : rgb_matrix_config.speed)) * abs(led.point.y - 32.0)* sin(r * PI / 128) + (1.5 * (rgb_matrix_config.speed == 0 ? 1 : rgb_matrix_config.speed)) * (led.point.x - (g_tick / 256.0 * 224)) * cos(r * PI / 128) + rgb_matrix_config.hue;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
void rgb_matrix_jellybean_raindrops( bool initialize ) {
HSV hsv;
RGB rgb;
// Change one LED every tick, make sure speed is not 0
uint8_t led_to_change = ( g_tick & ( 0x0A / (rgb_matrix_config.speed == 0 ? 1 : rgb_matrix_config.speed) ) ) == 0 ? rand() % (DRIVER_LED_TOTAL) : 255;
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// If initialize, all get set to random colors
// If not, all but one will stay the same as before.
if ( initialize || i == led_to_change )
{
hsv.h = rand() & 0xFF;
hsv.s = rand() & 0xFF;
// Override brightness with global brightness control
hsv.v = rgb_matrix_config.val;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
}
void rgb_matrix_multisplash(void) {
// if (g_any_key_hit < 0xFF) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
uint16_t c = 0, d = 0;
rgb_led last_led;
// if (g_last_led_count) {
for (uint8_t last_i = 0; last_i < g_last_led_count; last_i++) {
last_led = g_rgb_leds[g_last_led_hit[last_i]];
uint16_t dist = (uint16_t)sqrt(pow(led.point.x - last_led.point.x, 2) + pow(led.point.y - last_led.point.y, 2));
uint16_t effect = (g_key_hit[g_last_led_hit[last_i]] << 2) - dist;
c += MIN(MAX(effect, 0), 255);
d += 255 - MIN(MAX(effect, 0), 255);
}
// } else {
// d = 255;
// }
hsv.h = (rgb_matrix_config.hue + c) % 256;
hsv.v = MAX(MIN(d, 255), 0);
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
// } else {
// rgb_matrix_set_color_all( 0, 0, 0 );
// }
}
void rgb_matrix_splash(void) {
g_last_led_count = MIN(g_last_led_count, 1);
rgb_matrix_multisplash();
}
void rgb_matrix_solid_multisplash(void) {
// if (g_any_key_hit < 0xFF) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
uint16_t d = 0;
rgb_led last_led;
// if (g_last_led_count) {
for (uint8_t last_i = 0; last_i < g_last_led_count; last_i++) {
last_led = g_rgb_leds[g_last_led_hit[last_i]];
uint16_t dist = (uint16_t)sqrt(pow(led.point.x - last_led.point.x, 2) + pow(led.point.y - last_led.point.y, 2));
uint16_t effect = (g_key_hit[g_last_led_hit[last_i]] << 2) - dist;
d += 255 - MIN(MAX(effect, 0), 255);
}
// } else {
// d = 255;
// }
hsv.v = MAX(MIN(d, 255), 0);
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
// } else {
// rgb_matrix_set_color_all( 0, 0, 0 );
// }
}
void rgb_matrix_solid_splash(void) {
g_last_led_count = MIN(g_last_led_count, 1);
rgb_matrix_solid_multisplash();
}
// Needs eeprom access that we don't have setup currently
void rgb_matrix_custom(void) {
// HSV hsv;
// RGB rgb;
// for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
// {
// backlight_get_key_color(i, &hsv);
// // Override brightness with global brightness control
// hsv.v = rgb_matrix_config.val;
// rgb = hsv_to_rgb( hsv );
// rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
// }
}
void rgb_matrix_task(void) {
static uint8_t toggle_enable_last = 255;
if (!rgb_matrix_config.enable) {
rgb_matrix_all_off();
toggle_enable_last = rgb_matrix_config.enable;
return;
}
// delay 1 second before driving LEDs or doing anything else
static uint8_t startup_tick = 0;
if ( startup_tick < 20 ) {
startup_tick++;
return;
}
g_tick++;
if ( g_any_key_hit < 0xFFFFFFFF ) {
g_any_key_hit++;
}
for ( int led = 0; led < DRIVER_LED_TOTAL; led++ ) {
if ( g_key_hit[led] < 255 ) {
if (g_key_hit[led] == 254)
g_last_led_count = MAX(g_last_led_count - 1, 0);
g_key_hit[led]++;
}
}
// Factory default magic value
if ( rgb_matrix_config.mode == 255 ) {
rgb_matrix_test();
return;
}
// Ideally we would also stop sending zeros to the LED driver PWM buffers
// while suspended and just do a software shutdown. This is a cheap hack for now.
bool suspend_backlight = ((g_suspend_state && RGB_DISABLE_WHEN_USB_SUSPENDED) ||
(RGB_DISABLE_AFTER_TIMEOUT > 0 && g_any_key_hit > RGB_DISABLE_AFTER_TIMEOUT * 60 * 20));
uint8_t effect = suspend_backlight ? 0 : rgb_matrix_config.mode;
// Keep track of the effect used last time,
// detect change in effect, so each effect can
// have an optional initialization.
static uint8_t effect_last = 255;
bool initialize = (effect != effect_last) || (rgb_matrix_config.enable != toggle_enable_last);
effect_last = effect;
toggle_enable_last = rgb_matrix_config.enable;
// this gets ticked at 20 Hz.
// each effect can opt to do calculations
// and/or request PWM buffer updates.
switch ( effect ) {
case RGB_MATRIX_SOLID_COLOR:
rgb_matrix_solid_color();
break;
case RGB_MATRIX_ALPHAS_MODS:
rgb_matrix_alphas_mods();
break;
case RGB_MATRIX_DUAL_BEACON:
rgb_matrix_dual_beacon();
break;
case RGB_MATRIX_GRADIENT_UP_DOWN:
rgb_matrix_gradient_up_down();
break;
case RGB_MATRIX_RAINDROPS:
rgb_matrix_raindrops( initialize );
break;
case RGB_MATRIX_CYCLE_ALL:
rgb_matrix_cycle_all();
break;
case RGB_MATRIX_CYCLE_LEFT_RIGHT:
rgb_matrix_cycle_left_right();
break;
case RGB_MATRIX_CYCLE_UP_DOWN:
rgb_matrix_cycle_up_down();
break;
case RGB_MATRIX_RAINBOW_BEACON:
rgb_matrix_rainbow_beacon();
break;
case RGB_MATRIX_RAINBOW_PINWHEELS:
rgb_matrix_rainbow_pinwheels();
break;
case RGB_MATRIX_RAINBOW_MOVING_CHEVRON:
rgb_matrix_rainbow_moving_chevron();
break;
case RGB_MATRIX_JELLYBEAN_RAINDROPS:
rgb_matrix_jellybean_raindrops( initialize );
break;
#ifdef RGB_MATRIX_KEYPRESSES
case RGB_MATRIX_SOLID_REACTIVE:
rgb_matrix_solid_reactive();
break;
case RGB_MATRIX_SPLASH:
rgb_matrix_splash();
break;
case RGB_MATRIX_MULTISPLASH:
rgb_matrix_multisplash();
break;
case RGB_MATRIX_SOLID_SPLASH:
rgb_matrix_solid_splash();
break;
case RGB_MATRIX_SOLID_MULTISPLASH:
rgb_matrix_solid_multisplash();
break;
#endif
default:
rgb_matrix_custom();
break;
}
if ( ! suspend_backlight ) {
rgb_matrix_indicators();
}
}
void rgb_matrix_indicators(void) {
rgb_matrix_indicators_kb();
rgb_matrix_indicators_user();
}
__attribute__((weak))
void rgb_matrix_indicators_kb(void) {}
__attribute__((weak))
void rgb_matrix_indicators_user(void) {}
// void rgb_matrix_set_indicator_index( uint8_t *index, uint8_t row, uint8_t column )
// {
// if ( row >= MATRIX_ROWS )
// {
// // Special value, 255=none, 254=all
// *index = row;
// }
// else
// {
// // This needs updated to something like
// // uint8_t led[8], led_count;
// // map_row_column_to_led(row,column,led,&led_count);
// // for(uint8_t i = 0; i < led_count; i++)
// map_row_column_to_led( row, column, index );
// }
// }
void rgb_matrix_init(void) {
rgb_matrix_setup_drivers();
// TODO: put the 1 second startup delay here?
// clear the key hits
for ( int led=0; led<DRIVER_LED_TOTAL; led++ ) {
g_key_hit[led] = 255;
}
if (!eeconfig_is_enabled()) {
dprintf("rgb_matrix_init_drivers eeconfig is not enabled.\n");
eeconfig_init();
eeconfig_update_rgb_matrix_default();
}
rgb_matrix_config.raw = eeconfig_read_rgb_matrix();
if (!rgb_matrix_config.mode) {
dprintf("rgb_matrix_init_drivers rgb_matrix_config.mode = 0. Write default values to EEPROM.\n");
eeconfig_update_rgb_matrix_default();
rgb_matrix_config.raw = eeconfig_read_rgb_matrix();
}
eeconfig_debug_rgb_matrix(); // display current eeprom values
}
void rgb_matrix_setup_drivers(void) {
// Initialize TWI
i2c_init();
IS31FL3731_init( DRIVER_ADDR_1 );
IS31FL3731_init( DRIVER_ADDR_2 );
for ( int index = 0; index < DRIVER_LED_TOTAL; index++ ) {
bool enabled = true;
// This only caches it for later
IS31FL3731_set_led_control_register( index, enabled, enabled, enabled );
}
// This actually updates the LED drivers
IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
}
// Deals with the messy details of incrementing an integer
uint8_t increment( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) {
int16_t new_value = value;
new_value += step;
return MIN( MAX( new_value, min ), max );
}
uint8_t decrement( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) {
int16_t new_value = value;
new_value -= step;
return MIN( MAX( new_value, min ), max );
}
// void *backlight_get_custom_key_color_eeprom_address( uint8_t led )
// {
// // 3 bytes per color
// return EECONFIG_RGB_MATRIX + ( led * 3 );
// }
// void backlight_get_key_color( uint8_t led, HSV *hsv )
// {
// void *address = backlight_get_custom_key_color_eeprom_address( led );
// hsv->h = eeprom_read_byte(address);
// hsv->s = eeprom_read_byte(address+1);
// hsv->v = eeprom_read_byte(address+2);
// }
// void backlight_set_key_color( uint8_t row, uint8_t column, HSV hsv )
// {
// uint8_t led[8], led_count;
// map_row_column_to_led(row,column,led,&led_count);
// for(uint8_t i = 0; i < led_count; i++) {
// if ( led[i] < DRIVER_LED_TOTAL )
// {
// void *address = backlight_get_custom_key_color_eeprom_address(led[i]);
// eeprom_update_byte(address, hsv.h);
// eeprom_update_byte(address+1, hsv.s);
// eeprom_update_byte(address+2, hsv.v);
// }
// }
// }
void rgb_matrix_test_led( uint8_t index, bool red, bool green, bool blue ) {
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
if ( i == index )
{
IS31FL3731_set_led_control_register( i, red, green, blue );
}
else
{
IS31FL3731_set_led_control_register( i, false, false, false );
}
}
}
uint32_t rgb_matrix_get_tick(void) {
return g_tick;
}
void rgblight_toggle(void) {
rgb_matrix_config.enable ^= 1;
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_step(void) {
rgb_matrix_config.mode++;
if (rgb_matrix_config.mode >= RGB_MATRIX_EFFECT_MAX)
rgb_matrix_config.mode = 1;
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_step_reverse(void) {
rgb_matrix_config.mode--;
if (rgb_matrix_config.mode < 1)
rgb_matrix_config.mode = RGB_MATRIX_EFFECT_MAX - 1;
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_increase_hue(void) {
rgb_matrix_config.hue = increment( rgb_matrix_config.hue, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_decrease_hue(void) {
rgb_matrix_config.hue = decrement( rgb_matrix_config.hue, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_increase_sat(void) {
rgb_matrix_config.sat = increment( rgb_matrix_config.sat, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_decrease_sat(void) {
rgb_matrix_config.sat = decrement( rgb_matrix_config.sat, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_increase_val(void) {
rgb_matrix_config.val = increment( rgb_matrix_config.val, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_decrease_val(void) {
rgb_matrix_config.val = decrement( rgb_matrix_config.val, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_increase_speed(void) {
rgb_matrix_config.speed = increment( rgb_matrix_config.speed, 1, 0, 3 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);//EECONFIG needs to be increased to support this
}
void rgblight_decrease_speed(void) {
rgb_matrix_config.speed = decrement( rgb_matrix_config.speed, 1, 0, 3 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);//EECONFIG needs to be increased to support this
}
void rgblight_mode(uint8_t mode) {
rgb_matrix_config.mode = mode;
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
uint32_t rgblight_get_mode(void) {
return rgb_matrix_config.mode;
}