/* Copyright 2021 QMK * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "serial_usart.h" #ifndef USE_GPIOV1 // The default PAL alternate modes are used to signal that the pins are used for USART # ifndef SERIAL_USART_TX_PAL_MODE # define SERIAL_USART_TX_PAL_MODE 7 # endif #endif #ifndef SERIAL_USART_DRIVER # define SERIAL_USART_DRIVER SD1 #endif #ifdef SOFT_SERIAL_PIN # define SERIAL_USART_TX_PIN SOFT_SERIAL_PIN #endif static inline msg_t sdWriteHalfDuplex(SerialDriver* driver, uint8_t* data, uint8_t size) { msg_t ret = sdWrite(driver, data, size); // Half duplex requires us to read back the data we just wrote - just throw it away uint8_t dump[size]; sdRead(driver, dump, size); return ret; } #undef sdWrite #define sdWrite sdWriteHalfDuplex static inline msg_t sdWriteTimeoutHalfDuplex(SerialDriver* driver, uint8_t* data, uint8_t size, uint32_t timeout) { msg_t ret = sdWriteTimeout(driver, data, size, timeout); // Half duplex requires us to read back the data we just wrote - just throw it away uint8_t dump[size]; sdReadTimeout(driver, dump, size, timeout); return ret; } #undef sdWriteTimeout #define sdWriteTimeout sdWriteTimeoutHalfDuplex static inline void sdClear(SerialDriver* driver) { while (sdGetTimeout(driver, TIME_IMMEDIATE) != MSG_TIMEOUT) { // Do nothing with the data } } static SerialConfig sdcfg = { (SERIAL_USART_SPEED), // speed - mandatory (SERIAL_USART_CR1), // CR1 (SERIAL_USART_CR2), // CR2 (SERIAL_USART_CR3) // CR3 }; void handle_soft_serial_slave(void); /* * This thread runs on the slave and responds to transactions initiated * by the master */ static THD_WORKING_AREA(waSlaveThread, 2048); static THD_FUNCTION(SlaveThread, arg) { (void)arg; chRegSetThreadName("slave_transport"); while (true) { handle_soft_serial_slave(); } } __attribute__((weak)) void usart_init(void) { #if defined(USE_GPIOV1) palSetLineMode(SERIAL_USART_TX_PIN, PAL_MODE_STM32_ALTERNATE_OPENDRAIN); #else palSetLineMode(SERIAL_USART_TX_PIN, PAL_MODE_ALTERNATE(SERIAL_USART_TX_PAL_MODE) | PAL_STM32_OTYPE_OPENDRAIN); #endif #if defined(USART_REMAP) USART_REMAP; #endif } void usart_master_init(void) { usart_init(); sdcfg.cr3 |= USART_CR3_HDSEL; sdStart(&SERIAL_USART_DRIVER, &sdcfg); } void usart_slave_init(void) { usart_init(); sdcfg.cr3 |= USART_CR3_HDSEL; sdStart(&SERIAL_USART_DRIVER, &sdcfg); // Start transport thread chThdCreateStatic(waSlaveThread, sizeof(waSlaveThread), HIGHPRIO, SlaveThread, NULL); } static SSTD_t* Transaction_table = NULL; static uint8_t Transaction_table_size = 0; void soft_serial_initiator_init(SSTD_t* sstd_table, int sstd_table_size) { Transaction_table = sstd_table; Transaction_table_size = (uint8_t)sstd_table_size; usart_master_init(); } void soft_serial_target_init(SSTD_t* sstd_table, int sstd_table_size) { Transaction_table = sstd_table; Transaction_table_size = (uint8_t)sstd_table_size; usart_slave_init(); } void handle_soft_serial_slave(void) { uint8_t sstd_index = sdGet(&SERIAL_USART_DRIVER); // first chunk is always transaction id SSTD_t* trans = &Transaction_table[sstd_index]; // Always write back the sstd_index as part of a basic handshake sstd_index ^= HANDSHAKE_MAGIC; sdWrite(&SERIAL_USART_DRIVER, &sstd_index, sizeof(sstd_index)); if (trans->initiator2target_buffer_size) { sdRead(&SERIAL_USART_DRIVER, trans->initiator2target_buffer, trans->initiator2target_buffer_size); } if (trans->target2initiator_buffer_size) { sdWrite(&SERIAL_USART_DRIVER, trans->target2initiator_buffer, trans->target2initiator_buffer_size); } if (trans->status) { *trans->status = TRANSACTION_ACCEPTED; } } ///////// // start transaction by initiator // // int soft_serial_transaction(int sstd_index) // // Returns: // TRANSACTION_END // TRANSACTION_NO_RESPONSE // TRANSACTION_DATA_ERROR #ifndef SERIAL_USE_MULTI_TRANSACTION int soft_serial_transaction(void) { uint8_t sstd_index = 0; #else int soft_serial_transaction(int index) { uint8_t sstd_index = index; #endif if (sstd_index > Transaction_table_size) return TRANSACTION_TYPE_ERROR; SSTD_t* trans = &Transaction_table[sstd_index]; msg_t res = 0; sdClear(&SERIAL_USART_DRIVER); // First chunk is always transaction id sdWriteTimeout(&SERIAL_USART_DRIVER, &sstd_index, sizeof(sstd_index), TIME_MS2I(SERIAL_USART_TIMEOUT)); uint8_t sstd_index_shake = 0xFF; // Which we always read back first so that we can error out correctly // - due to the half duplex limitations on return codes, we always have to read *something* // - without the read, write only transactions *always* succeed, even during the boot process where the slave is not ready res = sdReadTimeout(&SERIAL_USART_DRIVER, &sstd_index_shake, sizeof(sstd_index_shake), TIME_MS2I(SERIAL_USART_TIMEOUT)); if (res < 0 || (sstd_index_shake != (sstd_index ^ HANDSHAKE_MAGIC))) { dprintf("serial::usart_shake NO_RESPONSE\n"); return TRANSACTION_NO_RESPONSE; } if (trans->initiator2target_buffer_size) { res = sdWriteTimeout(&SERIAL_USART_DRIVER, trans->initiator2target_buffer, trans->initiator2target_buffer_size, TIME_MS2I(SERIAL_USART_TIMEOUT)); if (res < 0) { dprintf("serial::usart_transmit NO_RESPONSE\n"); return TRANSACTION_NO_RESPONSE; } } if (trans->target2initiator_buffer_size) { res = sdReadTimeout(&SERIAL_USART_DRIVER, trans->target2initiator_buffer, trans->target2initiator_buffer_size, TIME_MS2I(SERIAL_USART_TIMEOUT)); if (res < 0) { dprintf("serial::usart_receive NO_RESPONSE\n"); return TRANSACTION_NO_RESPONSE; } } return TRANSACTION_END; }