/* Copyright 2017 Fred Sundvik * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "eeprom.h" #include "debug.h" #include "samd51j18a.h" #include "core_cm4.h" #include "component/nvmctrl.h" #ifndef EEPROM_SIZE # include "eeconfig.h" # define EEPROM_SIZE (((EECONFIG_SIZE + 3) / 4) * 4) // based off eeconfig's current usage, aligned to 4-byte sizes, to deal with LTO #endif #ifndef MAX # define MAX(X, Y) ((X) > (Y) ? (X) : (Y)) #endif #ifndef BUSY_RETRIES # define BUSY_RETRIES 10000 #endif // #define DEBUG_EEPROM_OUTPUT /* * Debug print utils */ #if defined(DEBUG_EEPROM_OUTPUT) # define eeprom_printf(fmt, ...) xprintf(fmt, ##__VA_ARGS__); #else /* NO_DEBUG */ # define eeprom_printf(fmt, ...) #endif /* NO_DEBUG */ __attribute__((aligned(4))) static uint8_t buffer[EEPROM_SIZE] = {0}; volatile uint8_t * SmartEEPROM8 = (uint8_t *)SEEPROM_ADDR; static inline bool eeprom_is_busy(void) { int timeout = BUSY_RETRIES; while (NVMCTRL->SEESTAT.bit.BUSY && timeout-- > 0) ; return NVMCTRL->SEESTAT.bit.BUSY; } static uint32_t get_virtual_eeprom_size(void) { // clang-format off static const uint32_t VIRTUAL_EEPROM_MAP[11][8] = { /* 4 8 16 32 64 128 256 512 */ /* 0*/ { 0, 0, 0, 0, 0, 0, 0, 0 }, /* 1*/ { 512, 1024, 2048, 4096, 4096, 4096, 4096, 4096 }, /* 2*/ { 512, 1024, 2048, 4096, 8192, 8192, 8192, 8192 }, /* 3*/ { 512, 1024, 2048, 4096, 8192, 16384, 16384, 16384 }, /* 4*/ { 512, 1024, 2048, 4096, 8192, 16384, 16384, 16384 }, /* 5*/ { 512, 1024, 2048, 4096, 8192, 16384, 32768, 32768 }, /* 6*/ { 512, 1024, 2048, 4096, 8192, 16384, 32768, 32768 }, /* 7*/ { 512, 1024, 2048, 4096, 8192, 16384, 32768, 32768 }, /* 8*/ { 512, 1024, 2048, 4096, 8192, 16384, 32768, 32768 }, /* 9*/ { 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536 }, /*10*/ { 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536 }, }; // clang-format on static uint32_t virtual_eeprom_size = UINT32_MAX; if (virtual_eeprom_size == UINT32_MAX) { virtual_eeprom_size = VIRTUAL_EEPROM_MAP[NVMCTRL->SEESTAT.bit.PSZ][NVMCTRL->SEESTAT.bit.SBLK]; } // eeprom_printf("get_virtual_eeprom_size:: %d:%d:%d\n", NVMCTRL->SEESTAT.bit.PSZ, NVMCTRL->SEESTAT.bit.SBLK, virtual_eeprom_size); return virtual_eeprom_size; } uint8_t eeprom_read_byte(const uint8_t *addr) { uintptr_t offset = (uintptr_t)addr; if (offset >= MAX(EEPROM_SIZE, get_virtual_eeprom_size())) { eeprom_printf("eeprom_read_byte:: out of bounds\n"); return 0x0; } if (get_virtual_eeprom_size() == 0) { return buffer[offset]; } if (eeprom_is_busy()) { eeprom_printf("eeprom_write_byte:: timeout\n"); return 0x0; } return SmartEEPROM8[offset]; } void eeprom_write_byte(uint8_t *addr, uint8_t value) { uintptr_t offset = (uintptr_t)addr; if (offset >= MAX(EEPROM_SIZE, get_virtual_eeprom_size())) { eeprom_printf("eeprom_write_byte:: out of bounds\n"); return; } if (get_virtual_eeprom_size() == 0) { buffer[offset] = value; return; } if (eeprom_is_busy()) { eeprom_printf("eeprom_write_byte:: timeout\n"); return; } SmartEEPROM8[offset] = value; } uint16_t eeprom_read_word(const uint16_t *addr) { const uint8_t *p = (const uint8_t *)addr; return eeprom_read_byte(p) | (eeprom_read_byte(p + 1) << 8); } uint32_t eeprom_read_dword(const uint32_t *addr) { const uint8_t *p = (const uint8_t *)addr; return eeprom_read_byte(p) | (eeprom_read_byte(p + 1) << 8) | (eeprom_read_byte(p + 2) << 16) | (eeprom_read_byte(p + 3) << 24); } void eeprom_read_block(void *buf, const void *addr, size_t len) { const uint8_t *p = (const uint8_t *)addr; uint8_t * dest = (uint8_t *)buf; while (len--) { *dest++ = eeprom_read_byte(p++); } } void eeprom_write_word(uint16_t *addr, uint16_t value) { uint8_t *p = (uint8_t *)addr; eeprom_write_byte(p++, value); eeprom_write_byte(p, value >> 8); } void eeprom_write_dword(uint32_t *addr, uint32_t value) { uint8_t *p = (uint8_t *)addr; eeprom_write_byte(p++, value); eeprom_write_byte(p++, value >> 8); eeprom_write_byte(p++, value >> 16); eeprom_write_byte(p, value >> 24); } void eeprom_write_block(const void *buf, void *addr, size_t len) { uint8_t * p = (uint8_t *)addr; const uint8_t *src = (const uint8_t *)buf; while (len--) { eeprom_write_byte(p++, *src++); } } void eeprom_update_byte(uint8_t *addr, uint8_t value) { eeprom_write_byte(addr, value); } void eeprom_update_word(uint16_t *addr, uint16_t value) { uint8_t *p = (uint8_t *)addr; eeprom_write_byte(p++, value); eeprom_write_byte(p, value >> 8); } void eeprom_update_dword(uint32_t *addr, uint32_t value) { uint8_t *p = (uint8_t *)addr; eeprom_write_byte(p++, value); eeprom_write_byte(p++, value >> 8); eeprom_write_byte(p++, value >> 16); eeprom_write_byte(p, value >> 24); } void eeprom_update_block(const void *buf, void *addr, size_t len) { uint8_t * p = (uint8_t *)addr; const uint8_t *src = (const uint8_t *)buf; while (len--) { eeprom_write_byte(p++, *src++); } }