/* Copyright 2012-2018 Jun Wako, Jack Humbert, Yiancar This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include "util.h" #include "matrix.h" #include "debounce.h" #include "quantum.h" #ifdef SPLIT_KEYBOARD # include "split_common/split_util.h" # include "split_common/transactions.h" # define ROWS_PER_HAND (MATRIX_ROWS / 2) #else # define ROWS_PER_HAND (MATRIX_ROWS) #endif #ifdef DIRECT_PINS_RIGHT # define SPLIT_MUTABLE #else # define SPLIT_MUTABLE const #endif #ifdef MATRIX_ROW_PINS_RIGHT # define SPLIT_MUTABLE_ROW #else # define SPLIT_MUTABLE_ROW const #endif #ifdef MATRIX_COL_PINS_RIGHT # define SPLIT_MUTABLE_COL #else # define SPLIT_MUTABLE_COL const #endif #ifdef DIRECT_PINS static SPLIT_MUTABLE pin_t direct_pins[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS; #elif (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW) # ifdef MATRIX_ROW_PINS static SPLIT_MUTABLE_ROW pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; # endif // MATRIX_ROW_PINS # ifdef MATRIX_COL_PINS static SPLIT_MUTABLE_COL pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; # endif // MATRIX_COL_PINS #endif /* matrix state(1:on, 0:off) */ extern matrix_row_t raw_matrix[MATRIX_ROWS]; // raw values extern matrix_row_t matrix[MATRIX_ROWS]; // debounced values #ifdef SPLIT_KEYBOARD // row offsets for each hand uint8_t thisHand, thatHand; #endif // user-defined overridable functions __attribute__((weak)) void matrix_init_pins(void); __attribute__((weak)) void matrix_read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row); __attribute__((weak)) void matrix_read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col, matrix_row_t row_shifter); #ifdef SPLIT_KEYBOARD __attribute__((weak)) void matrix_slave_scan_kb(void) { matrix_slave_scan_user(); } __attribute__((weak)) void matrix_slave_scan_user(void) {} #endif static inline void setPinOutput_writeLow(pin_t pin) { ATOMIC_BLOCK_FORCEON { setPinOutput(pin); writePinLow(pin); } } static inline void setPinInputHigh_atomic(pin_t pin) { ATOMIC_BLOCK_FORCEON { setPinInputHigh(pin); } } static inline uint8_t readMatrixPin(pin_t pin) { if (pin != NO_PIN) { return readPin(pin); } else { return 1; } } // matrix code #ifdef DIRECT_PINS __attribute__((weak)) void matrix_init_pins(void) { for (int row = 0; row < MATRIX_ROWS; row++) { for (int col = 0; col < MATRIX_COLS; col++) { pin_t pin = direct_pins[row][col]; if (pin != NO_PIN) { setPinInputHigh(pin); } } } } __attribute__((weak)) void matrix_read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { // Start with a clear matrix row matrix_row_t current_row_value = 0; matrix_row_t row_shifter = MATRIX_ROW_SHIFTER; for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++, row_shifter <<= 1) { pin_t pin = direct_pins[current_row][col_index]; if (pin != NO_PIN) { current_row_value |= readPin(pin) ? 0 : row_shifter; } } // Update the matrix current_matrix[current_row] = current_row_value; } #elif defined(DIODE_DIRECTION) # if defined(MATRIX_ROW_PINS) && defined(MATRIX_COL_PINS) # if (DIODE_DIRECTION == COL2ROW) static bool select_row(uint8_t row) { pin_t pin = row_pins[row]; if (pin != NO_PIN) { setPinOutput_writeLow(pin); return true; } return false; } static void unselect_row(uint8_t row) { pin_t pin = row_pins[row]; if (pin != NO_PIN) { setPinInputHigh_atomic(pin); } } static void unselect_rows(void) { for (uint8_t x = 0; x < ROWS_PER_HAND; x++) { unselect_row(x); } } __attribute__((weak)) void matrix_init_pins(void) { unselect_rows(); for (uint8_t x = 0; x < MATRIX_COLS; x++) { if (col_pins[x] != NO_PIN) { setPinInputHigh_atomic(col_pins[x]); } } } __attribute__((weak)) void matrix_read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { // Start with a clear matrix row matrix_row_t current_row_value = 0; if (!select_row(current_row)) { // Select row return; // skip NO_PIN row } matrix_output_select_delay(); // For each col... matrix_row_t row_shifter = MATRIX_ROW_SHIFTER; for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++, row_shifter <<= 1) { uint8_t pin_state = readMatrixPin(col_pins[col_index]); // Populate the matrix row with the state of the col pin current_row_value |= pin_state ? 0 : row_shifter; } // Unselect row unselect_row(current_row); matrix_output_unselect_delay(current_row, current_row_value != 0); // wait for all Col signals to go HIGH // Update the matrix current_matrix[current_row] = current_row_value; } # elif (DIODE_DIRECTION == ROW2COL) static bool select_col(uint8_t col) { pin_t pin = col_pins[col]; if (pin != NO_PIN) { setPinOutput_writeLow(pin); return true; } return false; } static void unselect_col(uint8_t col) { pin_t pin = col_pins[col]; if (pin != NO_PIN) { setPinInputHigh_atomic(pin); } } static void unselect_cols(void) { for (uint8_t x = 0; x < MATRIX_COLS; x++) { unselect_col(x); } } __attribute__((weak)) void matrix_init_pins(void) { unselect_cols(); for (uint8_t x = 0; x < ROWS_PER_HAND; x++) { if (row_pins[x] != NO_PIN) { setPinInputHigh_atomic(row_pins[x]); } } } __attribute__((weak)) void matrix_read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col, matrix_row_t row_shifter) { bool key_pressed = false; // Select col if (!select_col(current_col)) { // select col return; // skip NO_PIN col } matrix_output_select_delay(); // For each row... for (uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) { // Check row pin state if (readMatrixPin(row_pins[row_index]) == 0) { // Pin LO, set col bit current_matrix[row_index] |= row_shifter; key_pressed = true; } else { // Pin HI, clear col bit current_matrix[row_index] &= ~row_shifter; } } // Unselect col unselect_col(current_col); matrix_output_unselect_delay(current_col, key_pressed); // wait for all Row signals to go HIGH } # else # error DIODE_DIRECTION must be one of COL2ROW or ROW2COL! # endif # endif // defined(MATRIX_ROW_PINS) && defined(MATRIX_COL_PINS) #else # error DIODE_DIRECTION is not defined! #endif void matrix_init(void) { #ifdef SPLIT_KEYBOARD split_pre_init(); // Set pinout for right half if pinout for that half is defined if (!isLeftHand) { # ifdef DIRECT_PINS_RIGHT const pin_t direct_pins_right[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS_RIGHT; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { for (uint8_t j = 0; j < MATRIX_COLS; j++) { direct_pins[i][j] = direct_pins_right[i][j]; } } # endif # ifdef MATRIX_ROW_PINS_RIGHT const pin_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { row_pins[i] = row_pins_right[i]; } # endif # ifdef MATRIX_COL_PINS_RIGHT const pin_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT; for (uint8_t i = 0; i < MATRIX_COLS; i++) { col_pins[i] = col_pins_right[i]; } # endif } thisHand = isLeftHand ? 0 : (ROWS_PER_HAND); thatHand = ROWS_PER_HAND - thisHand; #endif // initialize key pins matrix_init_pins(); // initialize matrix state: all keys off memset(matrix, 0, sizeof(matrix)); memset(raw_matrix, 0, sizeof(raw_matrix)); debounce_init(ROWS_PER_HAND); matrix_init_quantum(); #ifdef SPLIT_KEYBOARD split_post_init(); #endif } #ifdef SPLIT_KEYBOARD // Fallback implementation for keyboards not using the standard split_util.c __attribute__((weak)) bool transport_master_if_connected(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { transport_master(master_matrix, slave_matrix); return true; // Treat the transport as always connected } bool matrix_post_scan(void) { bool changed = false; if (is_keyboard_master()) { static bool last_connected = false; matrix_row_t slave_matrix[ROWS_PER_HAND] = {0}; if (transport_master_if_connected(matrix + thisHand, slave_matrix)) { changed = memcmp(matrix + thatHand, slave_matrix, sizeof(slave_matrix)) != 0; last_connected = true; } else if (last_connected) { // reset other half when disconnected memset(slave_matrix, 0, sizeof(slave_matrix)); changed = true; last_connected = false; } if (changed) memcpy(matrix + thatHand, slave_matrix, sizeof(slave_matrix)); matrix_scan_quantum(); } else { transport_slave(matrix + thatHand, matrix + thisHand); matrix_slave_scan_kb(); } return changed; } #endif uint8_t matrix_scan(void) { matrix_row_t curr_matrix[MATRIX_ROWS] = {0}; #if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW) // Set row, read cols for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) { matrix_read_cols_on_row(curr_matrix, current_row); } #elif (DIODE_DIRECTION == ROW2COL) // Set col, read rows matrix_row_t row_shifter = MATRIX_ROW_SHIFTER; for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++, row_shifter <<= 1) { matrix_read_rows_on_col(curr_matrix, current_col, row_shifter); } #endif bool changed = memcmp(raw_matrix, curr_matrix, sizeof(curr_matrix)) != 0; if (changed) memcpy(raw_matrix, curr_matrix, sizeof(curr_matrix)); #ifdef SPLIT_KEYBOARD debounce(raw_matrix, matrix + thisHand, ROWS_PER_HAND, changed); changed = (changed || matrix_post_scan()); #else debounce(raw_matrix, matrix, ROWS_PER_HAND, changed); matrix_scan_quantum(); #endif return (uint8_t)changed; }